Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 14;1083(1):96-102.
doi: 10.1016/j.brainres.2006.02.017. Epub 2006 Mar 21.

The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms

Affiliations

The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms

Robert L Gannon et al. Brain Res. .

Abstract

The circadian activity of corticotropin releasing factor (CRF) and the hypothalamic-pituitary-adrenal axis is controlled by the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus. However, the reciprocal influence of CRF and the hypothalamic-pituitary-adrenal axis upon the circadian pacemaker is less well established. Therefore, in the present study, we tested two nonpeptidergic antagonists at CRF(1) receptors for their ability to modulate photic resetting of pacemaker time (phase). CP154,526 dose dependently and significantly inhibited light-induced phase advances in hamster circadian activity rhythms late in the subjective night by approximately 60% at a maximally effective dose of 20 mg/kg delivered intraperitoneally. Likewise, a further CRF(1) receptor antagonist, DMP695, inhibited phase advances by approximately 40% at a dose of 10 mg/kg. The attenuation of phase shifts by CP154,526 was specific to phase advances as light-induced phase delays of the circadian pacemaker achieved early in the subjective night were not affected by CP154,526 (20 mg/kg). We also tested one of the CRF(1) receptor antagonists for its potential ability to reset the pacemaker in the absence of light and found that CP154,526 did not elicit a nonphotic phase shifts in circadian activity rhythms at circadian times (CT) 2, 8, 14, 18, or 22. In conclusion, CRF(1) receptor antagonists selectively modulate the effect of light on the circadian pacemaker late at night. These novel data emphasize the suspected critical link between CRF and the hypothalamic-pituitary-adrenal axis, on the one hand, and stress (including stress caused by jet-lag) and depression on the other. These results also suggest that CRF(1) antagonists may not only improve affect but also counter the circadian disruption associated with depression and other stress-related disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources