Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes
- PMID: 16551625
- DOI: 10.1074/jbc.M512334200
Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes
Abstract
The F1F0-ATP synthase in mitochondria, in addition to its function in energy transduction, has a structural role in determining cristae morphology. This depends on its ability to form dimeric and higher oligomeric supracomplexes. Here we show that mutants of the dimer-specific subunits e and g, which destabilize dimeric and oligomeric F1F0-ATP synthase supracomplexes, have a decreased mitochondrial membrane potential delta psi. The degree of destabilization correlated with the reduction of the membrane potential. The enzymatic activities of F1F0-ATP synthase and cytochrome c oxidase, maximal respiration rate, coupling of oxidative phosphorylation, and tubular mitochondrial morphology were not affected or only to a minor extent. In mutants lacking one or two coiled-coil domains of subunit e, the reduction of the mitochondrial membrane potential was not due to loss of mitochondrial DNA, a reduced capacity of oxidative phosphorylation, or to altered cristae morphology. We propose a role for the supracomplexes of the F1F0-ATP synthase in organizing microdomains within the inner membrane, ensuring optimal bioenergetic competence of mitochondria.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
