Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Mar 15;12(6):1928-35.
doi: 10.1158/1078-0432.CCR-05-1181.

Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice

Affiliations
Comparative Study

Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice

Mohammad Hossein Pourgholami et al. Clin Cancer Res. .

Abstract

Purpose: Angiogenesis and vessel hyperpermeability are the two factors leading to the formation of ascites. Vascular endothelial growth factor (VEGF) plays a pivotal role in malignant ascites formation. We have recently shown that albendazole inhibits peritoneal growth of human colorectal cancer cells (HT-29). The present study was designed to find out if albendazole can suppress ascites formation in ascites-producing peritoneal carcinomatosis.

Experimental design: Female nude mice bearing peritoneal tumors of human ovarian cancer cells (OVCAR-3) were treated with albendazole. Following i.p. inoculation and ascites development, mice were given i.p. albendazole (150 mg/kg) or the vehicle x 3 weekly for 4 weeks.

Results: Whereas vehicle-treated mice developed overt ascites requiring repeated aspiration, ascites formation in the albendazole-treated mice was markedly suppressed. As a result of this, 7 of 10 mice from the control group had to be euthanized before the course of treatment was over. Suppressed ascites production and reduced tumor vascularity observed was a result of dramatic reduction in tumor VEGF production as revealed by profoundly lower VEGF ascites fluid and plasma levels. In vitro, incubation of SKOV-3 cells with various concentrations of albendazole led to significant dose-dependent inhibition of VEGF secretion. Examination of floating tumor cells collected from the peritoneal wash revealed profound down-regulation of VEGF mRNA in albendazole-treated mice.

Conclusions: These findings suggest for the first time that in nude mice bearing OVCAR-3 peritoneal tumors, by inhibiting VEGF production, albendazole abolishes tumor angiogenesis and ascites formation.

PubMed Disclaimer

Publication types

MeSH terms