Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;70(3):699-705.
doi: 10.1271/bbb.70.699.

Biosynthesis of 2'-O-methylmyxalamide D in the myxobacterium Cystobacter fuscus: a polyketide synthase-nonribosomal peptide synthetase system for the myxalamide D skeleton and a methyltransferase for the final O-methylation

Affiliations
Free article

Biosynthesis of 2'-O-methylmyxalamide D in the myxobacterium Cystobacter fuscus: a polyketide synthase-nonribosomal peptide synthetase system for the myxalamide D skeleton and a methyltransferase for the final O-methylation

Zhiyang Feng et al. Biosci Biotechnol Biochem. 2006 Mar.
Free article

Abstract

The biosynthetic gene cluster for the polyene antifungal antibiotic, 2'-O-methylmyxalamide D, was cloned from myxobacterium Cystobacter fuscus AJ-13278. A sequence analysis of the 12.8-kb region in the gene cluster revealed the presence of two type I polyketide synthase genes, mmxB and mmxC. The involvement of these two genes in the biosynthesis of 2'-O-methylmyxalamide D was confirmed by a gene disruption experiments. In addition, an S-adenosylmethionine-dependent methyltransferase gene (mmxM) was found downstream of the gene cluster and demonstrated, by a gene disruption analysis, to be responsible for converting the known unmethylated precursor, myxalamide D, into 2'-O-methylmyxalamide D.

PubMed Disclaimer

Similar articles

Cited by

Publication types