Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct 5;266(28):18808-13.

Baculovirus-mediated expression of the human vitamin D receptor. Functional characterization, vitamin D response element interactions, and evidence for a receptor auxiliary factor

Affiliations
  • PMID: 1655763
Free article

Baculovirus-mediated expression of the human vitamin D receptor. Functional characterization, vitamin D response element interactions, and evidence for a receptor auxiliary factor

P N MacDonald et al. J Biol Chem. .
Free article

Abstract

A baculovirus expression vector system (BEVS) was used to overproduce the full-length human vitamin D receptor (hVDR) in Spodoptera frugiperda ovarian cells. hVDR was expressed to a level of 0.5% of the total soluble protein in this system. Western analysis demonstrated that the baculovirus-generated protein had electrophoretic and immunologic properties equivalent to those of hVDR expressed in mammalian cells. The BEVS-derived receptor displayed specificity and high affinity (apparent Kd = 0.7 nM) for the 1,25(OH)2D3 ligand. Recombinant hVDR generated a specific protein-DNA complex with a duplex oligomer containing a vitamin D-responsive element (VDRE) in gel mobility shift assays. The intensity of the VDR.VDRE complex was not affected by 1,25(OH)2D3. However, the complex exhibited increased mobility in the presence of hormone, possibly the result of a 1,25(OH)2D3-dependent conformational change. A nuclear extract obtained from CV-1 cells markedly enhanced the intensity of this VDR.VDRE complex and produced an additional distinct VDR-dependent complex, thus implicating a role for nuclear auxiliary factors in multiple high affinity VDR.VDRE interactions. Finally, methylation interference studies defined the guanine residues contacted when the putative VDR-auxiliary factor complex associates with the rat osteocalcin VDRE; specifically, all of the GC base pairs in the sequence GGGTGAATGAGGACA. Therefore, these results show that the BEV system elicits high level expression of hVDR with critical functional characteristics being preserved.

PubMed Disclaimer

Publication types

LinkOut - more resources