A mechanism distinct from the L-type Ca current or Na-Ca exchange contributes to Ca entry in rat ventricular myocytes
- PMID: 16563501
- DOI: 10.1016/j.ceca.2006.01.011
A mechanism distinct from the L-type Ca current or Na-Ca exchange contributes to Ca entry in rat ventricular myocytes
Abstract
The aim of this paper was to characterize the pathways that allow Ca(2+) ions to enter the cell at rest. Under control conditions depolarization produced an increase of intracellular Ca concentration ([Ca(2+)](i)) that increased with depolarization up to about 0 mV and then declined. During prolonged depolarization the increase of [Ca(2+)](i) decayed. This increase of [Ca(2+)](i) was inhibited by nifedipine and the calculated rate of entry of Ca increased on depolarization and then declined with a similar time course to the inactivation of the L-type Ca current. We conclude that this component of change of [Ca(2+)](i) is due to the L-type Ca current. If intracellular Na was elevated then only part of the change of [Ca(2+)](i) was inhibited by nifedipine. The nifedipine-insensitive component increased monotonically with depolarization and showed no relaxation on prolonged depolarization. This component appears to result from Na-Ca exchange (NCX). When the L-type current and NCX were both inhibited (nifedipine and Na-free solution) then depolarization decreased and hyperpolarization increased [Ca(2+)](i). These changes of [Ca(2+)](i) were unaffected by modifiers of B-type Ca channels such as chlorpromazine and AlF(3) but were abolished by gadolinium ions. We conclude that, in addition to L-type Ca channels and NCX, there is another pathway for entry of Ca(2+) into the ventricular myocyte but this is distinct from the previously reported B-type channel.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
