The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing
- PMID: 16563786
- DOI: 10.1016/j.ejcts.2006.02.051
The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing
Abstract
Objective: To investigate the effect of biventricular and high septal pacing on the normal contraction sequence of the helical ventricular myocardial band, and its impact on left ventricular function.
Methods: Ten pigs (25-68 kg) underwent analysis of percent segmental shortening (SS%) by sonomicrometry, with crystals placed along the fiber orientation of the ascending, descending segments, and posterior LV wall within the spatial geometry of the helical heart. Unipolar pacing electrodes stimulated the right atrium (RA) and either the right ventricular apex and left ventricular posterior wall (atrio-biventricular), or the proximal high septum (atrio-high septal). Systemic hemodynamics, QRS-interval, cardiac index (CI), systolic and diastolic LV functions and pressure-dimension loops (P-D) were analyzed and cardiac motion was monitored by video analysis.
Results: Pacing increased normal sinus heart rate (NSR) from 77+/-9 beats/min to 98+/-5 beats/min. Atrial pacing did not change the NSR hemodynamic variables. Conversely, atrio-biventricular pacing prolonged the QRS-interval (91+/-14 ms vs 56+/-11 ms at baseline, p<0.05) and decreased mean arterial pressure (50+/-4 mmHg vs 58+/-12 mmHg), CI (3.4+/-0.3 L/(min m2) vs 4.0+/-0.8 L/(min m2)) and PRSW (71+/-25%) compared to NSR (p<0.05). Furthermore, atrio-biventricular pacing decreased SS% in all segments, especially at the LV posterior wall (71% of baseline, p<0.05), and disrupted the NSR shortening sequence (progression from descending to posterior to ascending regions). Changes were characterized by premature stimulation of the posterior wall segment adjacent to the pacer stimulus, with associated (1) decrease of pressure-dimension loop area, (2) desynchronization of P-D loops and (3) consistent loss of the twisting pattern of visible cardiac motion. In contrast, atrio-high septal pacing restored systemic hemodynamics, LV systolic and diastolic functions to baseline values and preserved the normal sequence of shortening of the ventricular myocardial band.
Conclusions: (1) Biventricular pacing disrupts of the natural sequence of shortening of the myocardial band and results in impaired LV function. (2) High septal pacing preserves the sequential shortening pattern of the myocardial band and LV function.
Comment in
-
Ventricular myocardial band concept and ventricular resynchronization device therapy: Crossing the roads?Eur J Cardiothorac Surg. 2006 Nov;30(5):816-7; author reply 817-8. doi: 10.1016/j.ejcts.2006.08.018. Epub 2006 Sep 26. Eur J Cardiothorac Surg. 2006. PMID: 17000114 No abstract available.
Similar articles
-
Sequential deformation and physiological considerations in unipolar right or left ventricular pacing.Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S188-97. doi: 10.1016/j.ejcts.2006.02.053. Epub 2006 Mar 24. Eur J Cardiothorac Surg. 2006. PMID: 16563791
-
Septal structure and function relationships parallel the left ventricular free wall ascending and descending segments of the helical heart.Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S115-25. doi: 10.1016/j.ejcts.2006.02.041. Epub 2006 Mar 24. Eur J Cardiothorac Surg. 2006. PMID: 16564184
-
Ventricular pacing lead location alters systemic hemodynamics and left ventricular function in patients with and without reduced ejection fraction.J Am Coll Cardiol. 2006 Oct 17;48(8):1634-41. doi: 10.1016/j.jacc.2006.04.099. Epub 2006 Sep 27. J Am Coll Cardiol. 2006. PMID: 17045900
-
The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration.Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S272-8. doi: 10.1016/j.ejcts.2006.02.011. Epub 2006 Mar 29. Eur J Cardiothorac Surg. 2006. PMID: 16567103 Review.
-
Does cardiac resynchronisation therapy improve survival and quality of life in patients with end-stage heart failure?Interact Cardiovasc Thorac Surg. 2008 Dec;7(6):1141-6. doi: 10.1510/icvts.2008.183707. Epub 2008 Jun 9. Interact Cardiovasc Thorac Surg. 2008. PMID: 18541605 Review.
Cited by
-
What Is the Heart? Anatomy, Function, Pathophysiology, and Misconceptions.J Cardiovasc Dev Dis. 2018 Jun 4;5(2):33. doi: 10.3390/jcdd5020033. J Cardiovasc Dev Dis. 2018. PMID: 29867011 Free PMC article. Review.
-
Acute right ventricular pressure overload compromises left ventricular function by altering septal strain and rotation.J Appl Physiol (1985). 2013 Jul 15;115(2):186-93. doi: 10.1152/japplphysiol.01208.2012. Epub 2013 May 9. J Appl Physiol (1985). 2013. PMID: 23661621 Free PMC article.
-
Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model.Comput Biol Med. 2022 Feb;141:105050. doi: 10.1016/j.compbiomed.2021.105050. Epub 2021 Nov 19. Comput Biol Med. 2022. PMID: 34823858 Free PMC article.
-
Sum of effects of myocardial ischemia followed by electrically induced tachycardia on myocardial function.Med Sci Monit Basic Res. 2013 May 31;19:153-62. doi: 10.12659/MSMBR.889115. Med Sci Monit Basic Res. 2013. PMID: 23722244 Free PMC article.
-
How does the left ventricle work? Ventricular rotation as a new index of cardiac performance.Korean Circ J. 2009 Sep;39(9):347-51. doi: 10.4070/kcj.2009.39.9.347. Epub 2009 Sep 30. Korean Circ J. 2009. PMID: 19949617 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous