Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;65(2):310-7.
doi: 10.1016/j.chemosphere.2006.02.026. Epub 2006 Mar 27.

Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China

Affiliations

Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China

Junli Zhou et al. Chemosphere. 2006 Oct.

Abstract

Elemental (TOC, TN, C/N) and stable carbon and nitrogen isotopic (delta(13)C, delta(15)N) compositions were measured for surface sediments, three sediment vibrocores, plants, and suspended particulate matter (SPM) collected from salt marsh of the Changjiang Estuary. The purpose of this study is to characterize the sources of organic matter in sediments and to further elucidate the factors influencing the isotope signature in the salt marsh. Our results indicate that organic matter preserved in the sediments is predominantly controlled by the particulate organic matter in the Changjiang Estuary. The in situ contribution of marsh plants carbon to sediment organic matter is clearest in the high marsh, where the low delta(13)C of the plants (-28.1 per thousand) is reflected by a sediment delta(13)C (-24.7 per thousand) lower than values found for the low marsh and bare flat sediments (-23.4 per thousand and -23.0 per thousand, respectively). The effect of grain size on the spatial difference of isotope composition in the marsh sediments is insignificant, based on the observation that similar isotope values are found in different size particles, both for delta(13)C and delta(15)N. Nutrient utilization by plant assimilation, however, shows great impact on the surface sediment delta(15)N composition, due to the isotope fractionation. With extensive plant coverage and the consequent low surface water nitrate concentration, delta(15)N values of the high marsh surface sediments show (15)N enrichment.

PubMed Disclaimer

Publication types

LinkOut - more resources