Locations of Arg-82, Asp-85, and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries
- PMID: 1656452
- PMCID: PMC52562
- DOI: 10.1073/pnas.88.19.8626
Locations of Arg-82, Asp-85, and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries
Abstract
The amino acids Asp-96, Asp-85, and Arg-82, which are important for proton transport by bacteriorhodopsin, are located in helix C. Site-directed spin labeling has been used to map their positions relative to the aqueous boundaries of the membrane. Selected amino acids in helix C, in the B-C loop on the extracellular side, and in the C-D loop on the intracellular side of the membrane were replaced by cysteine residues and derivatized with a sulfhydryl-specific spin label. The topographical locations of the nitroxide groups were determined by electron paramagnetic resonance spectroscopy in terms of both motional restriction and collision frequencies with dissolved molecular oxygen and membrane-impermeable chromium oxalate. The results show that in dark-adapted bacteriorhodopsin, Tyr-79 is at the aqueous-protein interface on the extracellular side of helix C whereas Val-101 is close to the aqueous boundary on the intracellular side of the protein. Further, Asp-96 is estimated to be within 7 A of the aqueous medium on the intracellular side of the membrane, whereas Arg-82 and Asp-85 are within 5 A and 9 A, respectively, of the aqueous boundary on the extracellular side of the membrane.
Similar articles
-
Site-directed spin-labeling reveals the orientation of the amino acid side-chains in the E-F loop of bacteriorhodopsin.J Mol Biol. 1999 Mar 19;287(1):163-71. doi: 10.1006/jmbi.1998.2593. J Mol Biol. 1999. PMID: 10074414
-
Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants.Science. 1990 Jun 1;248(4959):1088-92. doi: 10.1126/science.2160734. Science. 1990. PMID: 2160734 Review.
-
Time-resolved site-directed spin-labeling studies of bacteriorhodopsin: loop-specific conformational changes in M.Biochemistry. 2000 Feb 8;39(5):1120-7. doi: 10.1021/bi991963h. Biochemistry. 2000. PMID: 10653658
-
High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin.Biochim Biophys Acta. 2000 Apr 21;1457(3):253-62. doi: 10.1016/s0005-2728(00)00106-7. Biochim Biophys Acta. 2000. PMID: 10773169
-
Exploring the peptide 3(10)-helix reversible alpha-helix equilibrium with double label electron spin resonance.Biopolymers. 1995;37(4):243-50. doi: 10.1002/bip.360370403. Biopolymers. 1995. PMID: 7780027 Review.
Cited by
-
Time-resolved EPR immersion depth studies of a transmembrane peptide incorporated into bicelles.Biochim Biophys Acta. 2012 Mar;1818(3):821-8. doi: 10.1016/j.bbamem.2011.11.009. Epub 2011 Nov 11. Biochim Biophys Acta. 2012. PMID: 22100865 Free PMC article.
-
Neutron diffraction studies of fluid bilayers with transmembrane proteins: structural consequences of the achondroplasia mutation.Biophys J. 2006 Nov 15;91(10):3736-47. doi: 10.1529/biophysj.106.092247. Epub 2006 Sep 1. Biophys J. 2006. PMID: 16950849 Free PMC article.
-
Protein structural change at the cytoplasmic surface as the cause of cooperativity in the bacteriorhodopsin photocycle.Biophys J. 1996 Jan;70(1):461-7. doi: 10.1016/S0006-3495(96)79589-9. Biophys J. 1996. PMID: 8770222 Free PMC article.
-
Positioning of proteins in membranes: a computational approach.Protein Sci. 2006 Jun;15(6):1318-33. doi: 10.1110/ps.062126106. Protein Sci. 2006. PMID: 16731967 Free PMC article.
-
Electron paramagnetic resonance study of structural changes in the O photointermediate of bacteriorhodopsin.J Mol Biol. 2007 Feb 23;366(3):790-805. doi: 10.1016/j.jmb.2006.12.017. Epub 2006 Dec 12. J Mol Biol. 2007. PMID: 17196982 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources