Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 19;1115(1-2):64-71.
doi: 10.1016/j.chroma.2006.02.071. Epub 2006 Mar 27.

Preparative isolation and purification of chemical constituents from the root of Polygonum multiflorum by high-speed counter-current chromatography

Affiliations

Preparative isolation and purification of chemical constituents from the root of Polygonum multiflorum by high-speed counter-current chromatography

Shun Yao et al. J Chromatogr A. .

Abstract

High-speed counter-current chromatography methods, combined with solvent partition, were applied to the systematic separation and purification of chemical components from Chinese medicinal herb Polygonum multiflorum extract. The aim of this paper is summing up the rules of solvent system selection for diverse fractions of herbal extract, and establishing the systematic pattern to screen the bioactive constituents rapidly. Nine compounds including emodin, chrysophanol, rhein, 6-OH-emodin, emodin-8-beta-D-glucoside, polygonimitin B, 2,3,5,4'-tetrahydroxystilbene-2-beta-D-glucoside, gallic acid and an unknown glycoside, which differed in quantity and polarity remarkably, were obtained. The purities of them were all above 97% as determined by high-performance liquid chromatography (HPLC), and their structures were identified by 1H NMR and electrospray ionization mass spectrometry (ESI-MS). The results demonstrated that HSCCC is a speedy and efficient technique for systematic isolation of bioactive components from traditional medicinal herbs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources