Protein electron transfer rates set by the bridging secondary and tertiary structure
- PMID: 1656523
- DOI: 10.1126/science.1656523
Protein electron transfer rates set by the bridging secondary and tertiary structure
Abstract
The rate of long-distance electron transfer in proteins rapidly decreases with distance, which is indicative of an electron tunneling process. Calculations predict that the distance dependence of electron transfer in native proteins is controlled by the protein's structural motif. The helix and sheet content of a protein and the tertiary arrangement of these secondary structural units define the distance dependence of electronic coupling in that protein. The calculations use a tunneling pathway model applied previously with success to ruthenated proteins. The analysis ranks the average distance decay constant for electronic coupling in electron transfer proteins and identifies the amino acids that are coupled to the charge localization site more strongly or weakly than average for their distance.
Similar articles
-
Pathway analysis of protein electron-transfer reactions.Annu Rev Biophys Biomol Struct. 1992;21:349-77. doi: 10.1146/annurev.bb.21.060192.002025. Annu Rev Biophys Biomol Struct. 1992. PMID: 1326356 Review. No abstract available.
-
Nature of biological electron transfer.Nature. 1992 Feb 27;355(6363):796-802. doi: 10.1038/355796a0. Nature. 1992. PMID: 1311417
-
Kinetics of photooxidation of soluble cytochromes, HiPIP, and azurin by the photosynthetic reaction center of the purple phototrophic bacterium Rhodopseudomonas viridis.Biochemistry. 1993 May 11;32(18):4719-26. doi: 10.1021/bi00069a005. Biochemistry. 1993. PMID: 8387812
-
Electron tunneling in proteins: coupling through a beta strand.Science. 1995 Jun 23;268(5218):1733-5. doi: 10.1126/science.7792598. Science. 1995. PMID: 7792598
-
Electron transfer in ruthenium-modified proteins.J Bioenerg Biomembr. 1995 Jun;27(3):295-302. doi: 10.1007/BF02110099. J Bioenerg Biomembr. 1995. PMID: 8847343 Review.
Cited by
-
Long-range electron transfer.Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3534-9. doi: 10.1073/pnas.0408029102. Epub 2005 Feb 28. Proc Natl Acad Sci U S A. 2005. PMID: 15738403 Free PMC article.
-
Discrimination of class I cyclobutane pyrimidine dimer photolyase from blue light photoreceptors by single methionine residue.Biophys J. 2008 Mar 15;94(6):2194-203. doi: 10.1529/biophysj.107.119248. Epub 2007 Nov 30. Biophys J. 2008. PMID: 18055535 Free PMC article.
-
Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials.Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):611-6. doi: 10.1073/pnas.1316156111. Epub 2014 Jan 2. Proc Natl Acad Sci U S A. 2014. PMID: 24385579 Free PMC article.
-
Fluctuations in biological and bioinspired electron-transfer reactions.Annu Rev Phys Chem. 2010;61:461-85. doi: 10.1146/annurev.physchem.012809.103436. Annu Rev Phys Chem. 2010. PMID: 20192814 Free PMC article. Review.
-
Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine β-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism.J Am Chem Soc. 2015 May 6;137(17):5720-9. doi: 10.1021/ja512388n. Epub 2015 Apr 28. J Am Chem Soc. 2015. PMID: 25919134 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources