Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr;59(4):682-90.
doi: 10.1002/ana.20803.

Movement-related cortical potentials in primary lateral sclerosis

Affiliations
Comparative Study

Movement-related cortical potentials in primary lateral sclerosis

Ou Bai et al. Ann Neurol. 2006 Apr.

Abstract

Objective: Some patients with primary lateral sclerosis (PLS) have a clinical course suggestive of a length-dependent dying-back of corticospinal axons. We measured movement-related cortical potentials (MRCPs) in these patients to determine whether cortical functions that are generated through short, intracortical connections were preserved when functions conducted by longer corticospinal projections were impaired.

Methods: An electroencephalogram was recorded from scalp electrodes of 10 PLS patients and 7 age-matched healthy control subjects as they made individual finger-tap movements on a keypad. MRCPs were derived from back-averaging the electroencephalogram to the movement.

Results: MRCPs produced by finger taps were markedly reduced in PLS patients, including components generated by premotor areas of the cortex as well as the primary motor cortex. In contrast, the beta-band event-related desynchronization from the motor cortex was preserved.

Interpretation: These findings suggest that impairment in PLS is not limited to the distal axons of corticospinal neurons, but also affects neurons within the primary motor cortex and premotor cortical areas. The loss of the MRCP may serve as a useful marker of upper motor neuron dysfunction. Preservation of event-related desynchronization suggests that the cells of origin differ from the large pyramidal cells that generate the MRCP.

PubMed Disclaimer

Publication types

LinkOut - more resources