Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 May;96(5):560-2.
doi: 10.1093/bja/ael070. Epub 2006 Mar 27.

Attenuation in invasive blood pressure measurement systems

Affiliations
Free article
Review

Attenuation in invasive blood pressure measurement systems

A Ercole. Br J Anaesth. 2006 May.
Free article

Abstract

Poor fidelity invasive arterial blood pressure (IABP) traces are a frequent practical problem. It is common practice to describe any such trace as being 'damped'; the resonance behaviour of IABP measurement systems having been extensively described in the literature. However, as poor quality arterial blood pressure signals are seen even with optimal pressure transduction circuits, this cannot be the sole mechanism. In this commentary the classical lumped-parameter Windkessel model is extended by postulating an additional impedance proximal to the site of IABP measurement. This impedance represents any mechanical obstruction to laminar flow. Equations are presented relating measured and actual arterial blood pressures in terms of the model impedances. The reactive properties of such a partial obstruction may lead to an IABP trace that is superficially similar in appearance to the case of an over-damped measurement system. However, this phenomenon should be termed 'attenuation' rather than 'damping' and is probably more common. The distinction is of practical importance as the behaviour of the measured systolic and diastolic pressures is different -- both are systematically underestimated and the mean arterial pressure is thus not preserved. Furthermore, this error varies inversely with the peripheral vascular resistance of the tissues distal to the measurement point, therefore apparently magnifying the effect of vasodilatation on blood pressure or derived quantities.

PubMed Disclaimer

LinkOut - more resources