Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;261(4 Pt 2):F607-16.
doi: 10.1152/ajprenal.1991.261.4.F607.

Regulation of Na(+)-H+ exchange by ATP depletion and calmodulin antagonism in renal epithelial cells

Affiliations

Regulation of Na(+)-H+ exchange by ATP depletion and calmodulin antagonism in renal epithelial cells

K D Burns et al. Am J Physiol. 1991 Oct.

Abstract

The present studies examined effects of ATP depletion and calmodulin antagonism on stimulation of Na(+)-H+ exchange by cytosolic acidification in renal epithelial cells (LLC-PK1). ATP depletion significantly inhibited both amiloride-sensitive 22Na+ uptake (P less than 0.001; n = 12) and Na(+)-dependent intracellular pH (pHi) recovery in 2',7'-bis (carboxyethyl)-5(6)-carboxyfluorescein acetoxymethylester (BCECF/AM)-loaded cells. Calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7) and calmidazolium, both caused a concentration-dependent inhibition of Na(+)-H+ exchange activity. The W-7-induced inhibition of Na(+)-H+ exchange occurred in cells incubated for 24 h with phorbol 12-myristate 13-acetate, indicating that the effect of W-7 was not mediated by protein kinase C inhibition. Both W-7 and ATP depletion shifted the pHi dependence of the antiporter, and ATP depletion also reduced the maximal activity. In LLC-PK1/CL4 cells grown on permeable filters, W-7 inhibited the cytosolic acidification-stimulated basolateral exchanger by 54 +/- 5% (P less than 0.005; n = 7) and, in contrast, stimulated the apical exchanger by 28 +/- 13% (P less than 0.05; n = 6). ATP depletion significantly inhibited apical Na(+)-H+ exchange. These results suggest that an ATP-Ca(2+)-calmodulin-dependent process is involved in regulation of Na(+)-H+ exchange in LLC-PK1 cells. A Ca(2+)-calmodulin-dependent process activated the amiloride-sensitive basolateral Na(+)-H+ exchanger and inhibited the amiloride-resistant apical antiporter. Phosphorylation of these two Na(+)-H+ exchangers or regulatory proteins by a Ca(2+)-calmodulin-dependent protein kinase may mediate this differential regulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources