Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;34(4):660-8.
doi: 10.1007/s10439-005-9050-z. Epub 2006 Mar 28.

Pulmonary vascular resistance and impedance in isolated mouse lungs: effects of pulmonary emboli

Affiliations

Pulmonary vascular resistance and impedance in isolated mouse lungs: effects of pulmonary emboli

Holly A Tuchscherer et al. Ann Biomed Eng. 2006 Apr.

Abstract

To study pulsatile pressure-flow rate relationships in the intact pulmonary vascular network of mice, we developed a protocol for measuring pulmonary vascular resistance and impedance in isolated, ventilated, and perfused mouse lungs. We used pulmonary emboli to validate the effect of vascular obstruction on resistance and impedance. Main pulmonary artery and left atrial pressures and pulmonary vascular flow rate were measured under steady and pulsatile conditions in the lungs of C57BL/6J mice (n = 6) before and after two infusions with 25 microm-diameter microspheres (one million per infusion). After the first and second embolizations, pulmonary artery pressures increased approximately two-fold and three and a half-fold, respectively, compared to baseline, at a steady flow rate of 1 ml/min (P < 0.05). Pulmonary vascular resistance and 0 Hz impedance also increased after the first and second embolizations for all flow rates tested (P < 0.05). Frequency-dependent features of the pulmonary vascular impedance spectrum were suggestive of shifts in the major pulmonary vascular reflection sites with embolization. Our results demonstrate that pulmonary artery pressure, resistance, and impedance magnitude measured in this isolated lung setup changed in ways consistent with in vivo studies in larger animals and humans and demonstrate the usefulness of the isolated, ventilated, and perfused mouse lung for investigating steady and pulsatile pressure-flow rate relationships.

PubMed Disclaimer

Publication types

LinkOut - more resources