Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:99:119-45.

Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications

Affiliations
  • PMID: 16568890
Review

Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications

Joshua C Grieger et al. Adv Biochem Eng Biotechnol. 2005.

Abstract

Adeno-associated virus (AAV) has emerged as an attractive vector for gene therapy. AAV vectors have successfully been utilized to promote sustained gene expression in a variety of tissues such as muscle, eye, brain, liver, and lung. As the significance of AAV as a gene therapy vector has been realized over the past years, recent developments in recombinant AAV (rAAV) production and purification have revolutionized the AAV field. It is now possible to produce high yields of vector (10(12)-10(13) genome-containing particles per mL) that are free of contaminating cellular and helper virus proteins. Such vectors have been successfully used in preclinical applications in animal models such as those of hemophilia, lysosomal storage diseases and vision deficiency, all of which have shown therapeutic benefits from rAAV treatment. Clinical trials using rAAV2 for the treatment of hemophilia B, cystic fibrosis, alpha-1-antitrypsin deficiency, and Canavan disease have begun, and reports from these phase I trials support the safety seen in preclinical trials. Eventually, tissue-specific vectors that can potentially evade the immune system will be required to optimize success in gene therapy. In recent years, this has led to the development of retargeted rAAV2 vectors and the identification and characterization of new serotypes from human and nonhuman primates that could potentially achieve these goals. AAV virologists and gene therapists alike have just begun to scratch the surface in terms of the utility of this small virus in a clinical setting. In this chapter, we will provide a comprehensive overview of the recent advances in rAAV vector production and purification, vector development, and clinical applications.

PubMed Disclaimer