Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;50(4):1298-303.
doi: 10.1128/AAC.50.4.1298-1303.2006.

Impact of Enterococcus faecalis on the bactericidal activities of arbekacin, daptomycin, linezolid, and tigecycline against methicillin-resistant Staphylococcus aureus in a mixed-pathogen pharmacodynamic model

Affiliations

Impact of Enterococcus faecalis on the bactericidal activities of arbekacin, daptomycin, linezolid, and tigecycline against methicillin-resistant Staphylococcus aureus in a mixed-pathogen pharmacodynamic model

Kerry L LaPlante et al. Antimicrob Agents Chemother. 2006 Apr.

Abstract

We inoculated an in vitro pharmacodynamic model simultaneously with clinical isolates of methicillin-resistant Staphylococcus aureus and an enterocin-producing enterococcus (vancomycin-resistant Enterococcus faecalis, ampicillin susceptible) at 7 log10 CFU/ml to examine enterocin effects and antimicrobial activity on staphylococci. The investigated antimicrobial regimens were 100 mg arbekacin every 12 h (q12h), 6 mg daptomycin per kg of body weight/day, 600 mg linezolid q12h, and 100 mg tigecycline q24h alone and in combination (daptomycin, linezolid, and tigecycline) with arbekacin. Simulations were performed in triplicate; bacterial quantification occurred over 48 h, and development of resistance was evaluated throughout. When we evaluated the impact of antimicrobial activity against S. aureus alone, daptomycin demonstrated bactericidal activity (>or=3 log10 CFU/ml kill), whereas arbekacin, linezolid, and tigecycline displayed bacteriostatic activities (<3 log10 CFU/ml kill). In the mixed-pathogen model, early and distinctive stunting of S. aureus growth was noted (1.5 log CFU/ml difference) in the presence of enterocin-producing E. faecalis compared to growth controls run individually (P=0.02). Most noteworthy was that in the presence of enterocin-producing E. faecalis, bactericidal activity was observed with arbekacin and tigecycline and with the addition of arbekacin to linezolid. Antagonism was noted for the combination of tigecycline and arbekacin against S. aureus in the presence of enterocin-producing E. faecalis. Our research demonstrates that the inhibitory effect of E. faecalis contributed significantly to its overall antimicrobial impact on S. aureus. This contribution was enhanced or improved compared to the activity of each antimicrobial alone. Further research is warranted to determine the impact of polymicrobial infections on antimicrobial activity.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Modified sandwich bioassay. On the right, three 20-μl spots of vancomycin-resistant E. faecalis R2526 are pipetted onto methicillin-resistant S. aureus (MRSA 494), with a resultant inhibition zone ± standard deviation of 8.07 ± 0.98 mm. The left side depicts the inhibitory effects of α-chymotrypsin and trypsin when added to the agar assay, with a resultant inhibition zone ± standard deviation of 2.23 ± 0.25 mm.
FIG. 2.
FIG. 2.
Growth control of (a) single-pathogen model and (b) mixed-pathogen model.
FIG. 3.
FIG. 3.
Daptomycin (DAP) (a), linezolid (LND) (b), tigecycline (TIG) (c), and arbekacin (ARB) (d) activities against MRSA alone and in combination with VRE and arbekacin (a, b, and c).

Similar articles

Cited by

References

    1. Andes, D., M. L. van Ogtrop, J. Peng, and W. A. Craig. 2002. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob. Agents Chemother. 46:3484-3489. - PMC - PubMed
    1. Barry, A. L., P. C. Fuchs, and S. D. Brown. 2001. In vitro activities of daptomycin against 2,789 clinical isolates from 11 North American medical centers. Antimicrob. Agents Chemother. 45:1919-1922. - PMC - PubMed
    1. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71:1-20. - PubMed
    1. Giraffa, G. 2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88:215-222. - PubMed
    1. Hanberger, H., L. E. Nilsson, R. Maller, and B. Isaksson. 1991. Pharmacodynamics of daptomycin and vancomycin on Enterococcus faecalis and Staphylococcus aureus demonstrated by studies of initial killing and postantibiotic effect and influence of Ca2+ and albumin on these drugs. Antimicrob. Agents Chemother. 35:1710-1716. - PMC - PubMed

MeSH terms