Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;21(7):1698-704.
doi: 10.1093/humrep/del086. Epub 2006 Mar 29.

Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis

Affiliations

Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis

Jia-xi Zhou et al. Hum Reprod. 2006 Jul.

Abstract

Background: The mammalian epidermis is maintained by the ongoing proliferation of a subpopulation of keratinocytes known as epidermal stem cells. Sonic hedgehog (Shh) can regulate morphogenesis of hair follicles and several types of skin cancer, but the effect of Shh on proliferation of human putative epidermal stem cells (HPESCs) is poorly understood.

Methods and results: We first found that Shh, its receptors Patched1 (Ptc1) as well as Smoothened (Smo) and its downstream transcription factor Gli-1 were expressed in the basal layer of human fetal epidermis and freshly sorted HPESCs. Next, treatment of HPESCs with media conditioned by Shh-N-expressing cells promoted cell proliferation, whereas inhibition of Shh by cyclopamine, a specific inhibitor of Shh signalling, had an opposite effect. Interestingly, the mitogenic effect of epidermal growth factor (EGF) on HPESCs was efficiently abolished by cyclopamine. Finally, bone morphogenetic protein 4 (BMP-4), a potential downstream effector of Shh signalling, increased HPESC proliferation in a concentration-dependent manner.

Conclusions: Shh is an important regulator of HPESC proliferation in the basal layer of human fetal epidermis and modulates the cell responsiveness to EGF, which will assist to unravel the mechanisms that regulate stem cell proliferation and neoplasia in the human epidermis.

PubMed Disclaimer

Publication types

MeSH terms