Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;22(1):52-7.

[Molecular cloning of tomato LeHsp110/ClpB gene and its effect on the thermotolerance in plant]

[Article in Chinese]
Affiliations
  • PMID: 16572840

[Molecular cloning of tomato LeHsp110/ClpB gene and its effect on the thermotolerance in plant]

[Article in Chinese]
Jin-Ying Yang et al. Sheng Wu Gong Cheng Xue Bao. 2006 Jan.

Abstract

The heat shock protein ClpB is a member of the Clp family and functions as molecular chaperones. ClpB is related to the acquired thermotolerance in organisms. A cDNA of 3144 bp was screened out of a tomato cDNA library. The polypeptide deduced from the longest ORF contains 980 amino acid residues, and was classified into HSP100/ClpB family based on the result of molecular phylogenesis analysis. Thus it was named as LeHSP110/ClpB according to its calculated molecular weight. LeHSP110/ClpB was characteristic of heat-inducibility but no constitutive expression, and was demonstrated to locate in chloroplastic stroma. An antisense cDNA fragment of LeHsp110/ClpB under the control of CaMV 35S promoter was introduced into tomato by Agrobacterium tumefactions-mediated method. At high temperature, the mRNA levels of LeHsp110/ClpB in antisense transgenic plants were lower than those in control plants. The PS II of transgenic plants is more sensitive to high temperature than that of control plants according to data of Fv/Fm. These results clearly showed that HSP110/ClpB plays an important role in thermotolerance of high plants.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

Substances

LinkOut - more resources