Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 30:7:180.
doi: 10.1186/1471-2105-7-180.

A two-stage approach for improved prediction of residue contact maps

Affiliations

A two-stage approach for improved prediction of residue contact maps

Alessandro Vullo et al. BMC Bioinformatics. .

Abstract

Background: Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts), the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps. In order to alleviate these problems and achieve improved contact map predictions, in this paper we split the task into two stages: the prediction of a map's principal eigenvector (PE) from the primary sequence; the reconstruction of the contact map from the PE and primary sequence. Predicting the PE from the primary sequence consists in mapping a vector into a vector. This task is less complex than mapping vectors directly into two-dimensional matrices since the size of the problem is drastically reduced and so is the scale length of interactions that need to be learned.

Results: We develop architectures composed of ensembles of two-layered bidirectional recurrent neural networks to classify the components of the PE in 2, 3 and 4 classes from protein primary sequence, predicted secondary structure, and hydrophobicity interaction scales. Our predictor, tested on a non redundant set of 2171 proteins, achieves classification performances of up to 72.6%, 16% above a base-line statistical predictor. We design a system for the prediction of contact maps from the predicted PE. Our results show that predicting maps through the PE yields sizeable gains especially for long-range contacts which are particularly critical for accurate protein 3D reconstruction. The final predictor's accuracy on a non-redundant set of 327 targets is 35.4% and 19.8% for minimum contact separations of 12 and 24, respectively, when the top length/5 contacts are selected. On the 11 CASP6 Novel Fold targets we achieve similar accuracies (36.5% and 19.7%). This favourably compares with the best automated predictors at CASP6.

Conclusion: Our final system for contact map prediction achieves state-of-the-art performances, and may provide valuable constraints for improved ab initio prediction of protein structures. A suite of predictors of structural features, including the PE, and PE-based contact maps, is available at http://distill.ucd.ie.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of λ¯x¯ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH7oaBgaqeaiqbdIha4zaaraaaaa@3009@i values in the training set. See text for details.
Figure 2
Figure 2
4-class principal eigenvector prediction for protein 1A2P (108 amino acids). Solid line: exact eigenvector class. Dashed line: predicted eigenvector class. The class value is averaged over a moving window of 5 residues.
Figure 3
Figure 3
Examples of contact map predictions at 12 Å for protein 1A2P (108 amino acids). Exact map in the top-right half, predicted map in the bottom-left half. Prediction by MA_SS_ACC on the left, MA_SS_ACC_PE on the right (see text for details).

Similar articles

Cited by

References

    1. Baker D, Sail A. Protein structure prediction and structural genomics. Science. 2001;294:93–96. doi: 10.1126/science.1065659. - DOI - PubMed
    1. Fariselli P, Casadio R. A neural network based predictor of residue contacts in proteins. Protein Engineering. 1999;12:15–21. doi: 10.1093/protein/12.1.15. - DOI - PubMed
    1. Fariselli P, Olmea O, Valencia A, Casadio R. Prediction of contact maps with neural networks and correlated mutations. Protein Engineering. 2001;14:835–439. doi: 10.1093/protein/14.11.835. - DOI - PubMed
    1. Pollastri G, Baldi P. Prediction of Contact Maps by Recurrent Neural Network Architectures and Hidden Context Propagation from All Four Cardinal Corners. Bioinformatics. 2002;18:S62–S70. - PubMed
    1. Vendruscolo M, Kussell E, Domany E. Recovery of protein structure from contact maps. Folding and Design. 1997;2:295–306. doi: 10.1016/S1359-0278(97)00041-2. - DOI - PubMed

Publication types

LinkOut - more resources