Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 30:7:65.
doi: 10.1186/1471-2164-7-65.

The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

Affiliations

The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

Simon Hughes et al. BMC Genomics. .

Abstract

Background: Prostate cancer (CaP) is a disease with multifactorial etiology that includes both genetic and environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial neoplasia (HPIN). Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information obtained represents an average for all of the cells within the sample.

Results: To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture microdissection (LCM). The small quantities of DNA thus obtained were then amplified by means of multiple-displacement amplification (MDA), for use in genomic DNA array comparative genomic hybridisation (gaCGH). Recurrent chromosome copy number abnormalities (CNAs) were observed in both HPIN and CaP. In HPIN, chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal changes involving chromosomes 6, 10, 13 and 16 where also frequently observed.

Conclusion: An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the alterations in copy number are part of a programmed cycle of events that promote tumour development, progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of CNAs from small cell clusters and may assist in the discovery of potential genomic markers for early diagnosis, or identify the location of tumour suppressor genes (TSG) or oncogenes previously unreported in HPIN and CaP.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chromosomal alterations observed for HPIN and CaP DNA samples. Blue bars indicate loss in HPIN and yellow bars indicate gain in HPIN. Red bars indicate loss in CaP and green bars indicate gain in CaP.
Figure 2
Figure 2
Summary of chromosomal losses and gains in a) HPIN (n = 7) and b) CaP (n = 8). Number of samples of each type with gain or loss of the chromosome arm is shown by black and grey bars, respectively.

Similar articles

Cited by

References

    1. van der Kwast TH, Labrie F, Tetu B. Persistence of high-grade prostatic intra-epithelial neoplasia under combined androgen blockade therapy. Hum Pathol. 1999;30:1503–1507. doi: 10.1016/S0046-8177(99)90174-0. - DOI - PubMed
    1. Al-Maghrabi J, Vorobyova L, Toi A, Chapman W, Zielenska M, Squire JA. Identification of numerical chromosomal changes detected by interphase fluorescence in situ hybridization in high-grade prostate intraepithelial neoplasia as a predictor of carcinoma. Arch Pathol Lab Med. 2002;126:165–169. - PubMed
    1. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–821. - PubMed
    1. van Dekken H, Paris PL, Albertson DG, Alers JC, Andaya A, Kowbel D, van der Kwast TH, Pinkel D, Schroder FH, Vissers KJ, Wildhagen MF, Collins C. Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarcinomas by high-resolution genomic array analysis. Genes Chromosomes Cancer. 2004;39:249–256. doi: 10.1002/gcc.20001. - DOI - PubMed
    1. Wolf M, Mousses S, Hautaniemi S, Karhu R, Huusko P, Allinen M, Elkahloun A, Monni O, Chen Y, Kallioniemi A, Kallioniemi OP. High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia. 2004;6:240–247. - PMC - PubMed

Publication types