Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 12;358(4):1094-105.
doi: 10.1016/j.jmb.2006.02.039. Epub 2006 Mar 2.

Standard conformations of beta-arches in beta-solenoid proteins

Affiliations

Standard conformations of beta-arches in beta-solenoid proteins

Jérôme Hennetin et al. J Mol Biol. .

Erratum in

  • J Mol Biol. 2006 Jul 7;360(2):520-1

Abstract

Strand-turn-strand motifs found in beta-helical (more generally, beta-solenoid) proteins differ fundamentally from those found in globular proteins. The latter are primarily beta-hairpins in which the two strands form an antiparallel beta-sheet. In the former, the two strands are relatively rotated by approximately 90 degrees around the strand axes so that they interact via the side-chains, not via the polypeptide backbones. We call the latter structures, beta-arches, and their turns, beta-arcs. In beta-solenoid proteins, beta-arches stack in-register to form beta-arcades in which parallel beta-sheets are assembled from corresponding strands in successive layers. The number of beta-solenoids whose three-dimensional structures have been determined is now large enough to support a detailed analysis and classification of beta-arc conformations. Here, we present a systematic account of beta-arcs distinguished by the number of residues, their conformations, and their propensity to stack into arcades with other like or unlike arches. The trends to emerge from this analysis have implications for sequence-based detection and structural prediction of other beta-solenoid proteins as well as for identification of amyloidogenic sequences and elucidation of amyloid fibril structures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources