Status of text-mining techniques applied to biomedical text
- PMID: 16580973
- DOI: 10.1016/j.drudis.2006.02.011
Status of text-mining techniques applied to biomedical text
Abstract
Scientific progress is increasingly based on knowledge and information. Knowledge is now recognized as the driver of productivity and economic growth, leading to a new focus on the role of information in the decision-making process. Most scientific knowledge is registered in publications and other unstructured representations that make it difficult to use and to integrate the information with other sources (e.g. biological databases). Making a computer understand human language has proven to be a complex achievement, but there are techniques capable of detecting, distinguishing and extracting a limited number of different classes of facts. In the biomedical field, extracting information has specific problems: complex and ever-changing nomenclature (especially genes and proteins) and the limited representation of domain knowledge.
Similar articles
-
Recognizing names in biomedical texts: a machine learning approach.Bioinformatics. 2004 May 1;20(7):1178-90. doi: 10.1093/bioinformatics/bth060. Epub 2004 Feb 10. Bioinformatics. 2004. PMID: 14871877
-
Facts from text: can text mining help to scale-up high-quality manual curation of gene products with ontologies?Brief Bioinform. 2008 Nov;9(6):466-78. doi: 10.1093/bib/bbn043. Epub 2008 Dec 6. Brief Bioinform. 2008. PMID: 19060303 Review.
-
Extracting human protein interactions from MEDLINE using a full-sentence parser.Bioinformatics. 2004 Mar 22;20(5):604-11. doi: 10.1093/bioinformatics/btg452. Epub 2004 Jan 22. Bioinformatics. 2004. PMID: 15033866
-
Term identification in the biomedical literature.J Biomed Inform. 2004 Dec;37(6):512-26. doi: 10.1016/j.jbi.2004.08.004. J Biomed Inform. 2004. PMID: 15542023
-
A survey of current work in biomedical text mining.Brief Bioinform. 2005 Mar;6(1):57-71. doi: 10.1093/bib/6.1.57. Brief Bioinform. 2005. PMID: 15826357 Review.
Cited by
-
MetaboListem and TABoLiSTM: Two Deep Learning Algorithms for Metabolite Named Entity Recognition.Metabolites. 2022 Mar 22;12(4):276. doi: 10.3390/metabo12040276. Metabolites. 2022. PMID: 35448463 Free PMC article.
-
ExaCT: automatic extraction of clinical trial characteristics from journal publications.BMC Med Inform Decis Mak. 2010 Sep 28;10:56. doi: 10.1186/1472-6947-10-56. BMC Med Inform Decis Mak. 2010. PMID: 20920176 Free PMC article.
-
Harnessing Event Report Data to Identify Diagnostic Error During the COVID-19 Pandemic.Jt Comm J Qual Patient Saf. 2022 Feb;48(2):71-80. doi: 10.1016/j.jcjq.2021.10.002. Epub 2021 Oct 29. Jt Comm J Qual Patient Saf. 2022. PMID: 34844874 Free PMC article.
-
Anni 2.0: a multipurpose text-mining tool for the life sciences.Genome Biol. 2008;9(6):R96. doi: 10.1186/gb-2008-9-6-r96. Epub 2008 Jun 12. Genome Biol. 2008. PMID: 18549479 Free PMC article.
-
Overview and analysis of the text mining applications in the construction industry.Heliyon. 2022 Dec 5;8(12):e12088. doi: 10.1016/j.heliyon.2022.e12088. eCollection 2022 Dec. Heliyon. 2022. PMID: 36506381 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources