Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep-Oct;82(5):369-77.
doi: 10.1093/oxfordjournals.jhered.a111106.

Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution

Affiliations

Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution

H A Wichman et al. J Hered. 1991 Sep-Oct.

Erratum in

  • J Hered 1991 Nov-Dec;82(6):ii, 526

Abstract

We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among species, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection.

PubMed Disclaimer

Publication types

LinkOut - more resources