Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec 1;147(11):3915-20.

Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide

Affiliations
  • PMID: 1658153

Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide

J Stadler et al. J Immunol. .

Abstract

Although IL-1 is an important modulator of chondrocyte metabolism, the postreceptor events triggered by IL-1 remain obscure. The present study shows that IL-1 induces the biosynthesis of nitric oxide (.N = O) by articular chondrocytes. Synthesis of .N = O is also induced by LPS. Other inflammatory mediators such as IFN-gamma, fibroblast growth factor, and TNF-alpha fail to provoke the production of .N = O, but they increase the potency of IL-1. A combination of IL-1, LPS, and TNF-alpha was shown to induce maximal production of 355 +/- 51 nmol/10(6) cells/72 h of nitrite (NO2-), which was measured as a stable end-product of .N = O generation. The biosynthesis of .N = O requires an induction period of approximately 6 h and continues for at least 72 h. Inhibition of .N = O production with the competitive inhibitor NG-monomethyl-L-arginine (NMA) leads to a suppression of gelatinase and PGE2 synthesis by chondrocytes activated with IL-1 alone. In contrast, NMA enhances the synthesis of both gelatinase and PGE2 after activation with a combination of IL-1, LPS, and TNF-alpha. An increase of PGE2 synthesis from 42.0 +/- 21.0 to 174.0 +/- 33.5 ng/10(6) cells/72 h resulted from the addition of NMA when these stimulatory agents were combined. Exposure of IL-1 and fibroblast growth factor-stimulated chondrocytes to authentic, exogenous .N = O led to an increase of PGE2 synthesis from 5.6 +/- 1.7 of untreated cells to 15.8 +/- 6.8 ng/10(6) of .N = O treated cells within the 1st h. This was followed by a suppression of PGE2 synthesis within the next 2 h.

PubMed Disclaimer

Publication types