Genomic analysis of the Opi- phenotype
- PMID: 16582425
- PMCID: PMC1526532
- DOI: 10.1534/genetics.106.057489
Genomic analysis of the Opi- phenotype
Abstract
Most of the phospholipid biosynthetic genes of Saccharomyces cerevisiae are coordinately regulated in response to inositol and choline. Inositol affects the intracellular levels of phosphatidic acid (PA). Opi1p is a repressor of the phospholipid biosynthetic genes and specifically binds PA in the endoplasmic reticulum. In the presence of inositol, PA levels decrease, releasing Opi1p into the nucleus where it represses transcription. The opi1 mutant overproduces and excretes inositol into the growth medium in the absence of inositol and choline (Opi(-) phenotype). To better understand the mechanism of Opi1p repression, the viable yeast deletion set was screened to identify Opi(-) mutants. In total, 89 Opi(-) mutants were identified, of which 7 were previously known to have the Opi(-) phenotype. The Opi(-) mutant collection included genes with roles in phospholipid biosynthesis, transcription, protein processing/synthesis, and protein trafficking. Included in this set were all nonessential components of the NuA4 HAT complex and six proteins in the Rpd3p-Sin3p HDAC complex. It has previously been shown that defects in phosphatidylcholine synthesis (cho2 and opi3) yield the Opi(-) phenotype because of a buildup of PA. However, in this case the Opi(-) phenotype is conditional because PA can be shuttled through a salvage pathway (Kennedy pathway) by adding choline to the growth medium. Seven new mutants present in the Opi(-) collection (fun26, kex1, nup84, tps1, mrpl38, mrpl49, and opi10/yol032w) were also suppressed by choline, suggesting that these affect PC synthesis. Regulation in response to inositol is also coordinated with the unfolded protein response (UPR). Consistent with this, several Opi(-) mutants were found to affect the UPR (yhi9, ede1, and vps74).
Figures
References
-
- Ambroziak, J., and S. A. Henry, 1994. INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J. Biol. Chem. 269: 15344–15349. - PubMed
-
- Bowers, K., and T. H. Stevens, 2005. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1744: 438–454. - PubMed
-
- Carman, G. M., and S. A. Henry, 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361–399. - PubMed
-
- Carrozza, M. J., R. T. Utley, J. L. Workman and J. Coté, 2003. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19: 321–329. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
