Computational approaches for modeling human intestinal absorption and permeability
- PMID: 16583199
- PMCID: PMC2441499
- DOI: 10.1007/s00894-005-0065-z
Computational approaches for modeling human intestinal absorption and permeability
Abstract
Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate.
Figures

Similar articles
-
In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling.Curr Top Med Chem. 2018;18(26):2209-2229. doi: 10.2174/1568026619666181130140350. Curr Top Med Chem. 2018. PMID: 30499410 Review.
-
In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.Eur J Pharm Sci. 2013 Jul 16;49(4):679-98. doi: 10.1016/j.ejps.2013.05.019. Epub 2013 May 29. Eur J Pharm Sci. 2013. PMID: 23727464
-
Passive oral drug absorption can be predicted more reliably by experimental than computational models--fact or myth.Eur J Pharm Sci. 2008 Jul 3;34(2-3):129-39. doi: 10.1016/j.ejps.2008.03.001. Epub 2008 Mar 15. Eur J Pharm Sci. 2008. PMID: 18455374
-
A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.Eur J Pharm Sci. 2014 Oct 15;63:167-77. doi: 10.1016/j.ejps.2014.07.003. Epub 2014 Jul 18. Eur J Pharm Sci. 2014. PMID: 25046168
-
In silico predictions of ADME-Tox properties: drug absorption.Comb Chem High Throughput Screen. 2011 Jun 1;14(5):339-61. doi: 10.2174/138620711795508359. Comb Chem High Throughput Screen. 2011. PMID: 21470183 Review.
Cited by
-
Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro.Proteins. 2022 Sep;90(9):1617-1633. doi: 10.1002/prot.26341. Epub 2022 Apr 13. Proteins. 2022. PMID: 35384056 Free PMC article.
-
Preclinical pharmacokinetics and in vitro ADME properties of PAT-1102: a novel HDAC inhibitor for cancer therapy.J Cancer Res Clin Oncol. 2025 May 24;151(5):174. doi: 10.1007/s00432-025-06227-5. J Cancer Res Clin Oncol. 2025. PMID: 40411569 Free PMC article.
-
Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers.Membranes (Basel). 2024 Jul 14;14(7):157. doi: 10.3390/membranes14070157. Membranes (Basel). 2024. PMID: 39057665 Free PMC article. Review.
-
Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction.PLoS One. 2012;7(7):e40654. doi: 10.1371/journal.pone.0040654. Epub 2012 Jul 16. PLoS One. 2012. PMID: 22815781 Free PMC article.
-
Rational methods for the selection of diverse screening compounds.ACS Chem Biol. 2011 Mar 18;6(3):208-17. doi: 10.1021/cb100420r. Epub 2011 Feb 15. ACS Chem Biol. 2011. PMID: 21261294 Free PMC article. Review.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S1367-5931(99)80056-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/s1367-5931(99)80056-8'}, {'type': 'PubMed', 'value': '10419843', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10419843/'}]}
- Smith DA, van de Waterbeemd H (1999) Curr Opin Chem Biol 3:373–378 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S1359-6446(99)01451-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/s1359-6446(99)01451-8'}, {'type': 'PubMed', 'value': '10652455', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10652455/'}]}
- Clark DE, Pickett SD (2000) Drug Discovery Today 5:49–58 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1098-1128(199805)18:3<149::AID-MED2>3.0.CO;2-X', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1098-1128(199805)18:3<149::aid-med2>3.0.co;2-x'}, {'type': 'PubMed', 'value': '9578985', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9578985/'}]}
- Fecik RA, Frank KE, Gentry EJ, Menon SR, Mitscher LA, Telikepalli H (1998) Med Res Rev 18:149–185 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S1367-5931(98)80017-3', 'is_inner': False, 'url': 'https://doi.org/10.1016/s1367-5931(98)80017-3'}, {'type': 'PubMed', 'value': '9691080', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9691080/'}]}
- Tarbit MH, Berman J (1998) Curr Opin Chem Biol 2:411–416 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/1359-6446(96)10020-9', 'is_inner': False, 'url': 'https://doi.org/10.1016/1359-6446(96)10020-9'}]}
- Navia MA, Chaturvedi PR (1996) Drug Discovery Today 1:179–189
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases