Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr;23(4):461-71.
doi: 10.1016/0022-2828(91)90170-q.

Evidence for a sustained effectiveness of sodium-channel activators in failing human myocardium

Affiliations

Evidence for a sustained effectiveness of sodium-channel activators in failing human myocardium

R H Schwinger et al. J Mol Cell Cardiol. 1991 Apr.

Abstract

Elevation of cytosolic sodium is thought to be correlated with an increase in force of contraction due to an activation of sodium-calcium exchange. We investigated the inotropic response mediated by the new sodium-channel activator BDF 9148 (0.01-100 mumol/l) on failing human myocardium. Force of contraction was studied using electrically driven human papillary muscle strips from moderately (NYHA II-III, mitral valve replacement) and terminally (NYHA IV, heart transplantation) failing hearts. We also investigated the effects in auricular trabeculae from non-failing hearts (aortocoronary bypass operation). Results were compared with inotropic responses to DPI 201-106 (DPI, 0.1-3 mumol/l), Ca2+ (1.8-15 mmol/l) and isoprenaline (0.001-1 mumol/l). Carbachol (100 mumol/l) and adenosine (1000 mumol/l) were examined in the presence of BDF 9148 and isoprenaline. Both sodium-channel activators, BDF 9148 and DPI 201-106, increased force of contraction in a dose-dependent manner in papillary muscle strips as well as in auricular trabeculae. BDF 9148 and DPI 201-106 were more effective (max. PIE NYHA II-III 1.6 +/- 0.2 mN, NYHA IV 5.9 +/- 0.7 mN, P less than 0.05) and more potent (EC50 (in mumol/l): NYHA IV 0.35, 0.19-0.66; NYHA II-III 1.85, 1.37-2.41) in terminally failing as compared to moderately failing left ventricular myocardium. Moreover, the positive inotropic effects of BDF 9148 were greater than those of DPI 201-106 in NYHA IV (max. PIE 2.7 +/- 0.3 mN, P less than 0.05). In NYHA IV, BDF 9148 was as effective as CA2+ (max. PIE 5.1 +/- 0.4 mN). In the same hearts, the positive inotropic effects of isoprenaline were reduced in NYHA IV (max. PIE 2.1 +/- 0.3 mN) compared to NYHA II-III (max. PIE 3.4 +/- 0.4 mN, P less than 0.05). Adenosine as well as carbachol did not affect the positive inotropic response of BDF 9148 or DPI 201-106 but reduced the effectiveness of isoprenaline (P less than 0.05). In myocardial membranes, BDF 9148 was 1000-fold less effective in competition experiments with 3H-ouabain than ouabain. We conclude that (1) sodium-channel activators may produce a significant cAMP-independent positive inotropic effect in left ventricular myocardium from failing human hearts; (2) the inotropic effect of sodium-channel activators were more potent and more effective in NYHA IV as compared to NYHA II-III. The degree of myocardial failure does not reduce the effectiveness of the sodium-channel activator BDF 9148.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources