Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug;23(8):929-37.
doi: 10.1016/0022-2828(91)90135-9.

Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure

Affiliations

Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure

D J Beuckelmann et al. J Mol Cell Cardiol. 1991 Aug.

Abstract

The Ca(2+)-current plays a prominent role in triggering excitation-contraction coupling in the mammalian heart. It is also a target of clinically important drugs such as catecholamines or Ca(2+)-channel blockers. Until now studies of Ca(2+)-channels in human ventricular myocardium have been hampered by the fact that adequate voltage control cannot be obtained in multicellular preparations. To characterize the properties of human myocardial Ca(2+)-currents, ventricular myocytes were isolated from explanted hearts of patients with end-stage heart failure undergoing cardiac transplantation. The current-voltage relation and voltage-dependent inactivation of L-type currents were similar to those in non-diseased guinea-pig myocardium. Currents could be stimulated with isoprenaline in a dose-dependent manner. When cells were superfused with a Na(+)-free solution in the presence of Tetrodotoxin, Cs+ and Tetraethylammonium to block interfering Na+ and K(+)-currents, depolarization from a holding potential of -90 mV to -80-(-)50 mV did not elicit any time-dependent inward-current. Changing the holding potential from -90 to -45 mV did not alter the current-voltage relation. We conclude that T-type Ca(2+)-currents do not seem to make a detectable contribution to the transmembrane Ca(2+)-influx and that L-type currents in human ventricular myocytes of patients with severe heart failure have characteristics that are similar to those in other mammalian species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources