Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Apr;17(2):285-92.
doi: 10.1016/j.semcdb.2006.02.008. Epub 2006 Mar 2.

Signal transduction pathways leading to Ca2+ release in a vertebrate model system: lessons from Xenopus eggs

Affiliations
Review

Signal transduction pathways leading to Ca2+ release in a vertebrate model system: lessons from Xenopus eggs

Ken-ichi Sato et al. Semin Cell Dev Biol. 2006 Apr.

Abstract

At fertilization, eggs unite with sperm to initiate developmental programs that give rise to development of the embryo. Defining the molecular mechanism of this fundamental process at the beginning of life has been a key question in cell and developmental biology. In this review, we examine sperm-induced signal transduction events that lead to release of intracellular Ca(2+), a pivotal trigger of developmental activation, during fertilization in Xenopus laevis. Recent data demonstrate that metabolism of inositol 1,4,5-trisphosphate (IP(3)), a second messenger for Ca(2+) release, is carefully regulated and involves phospholipase C (PLC) and the tyrosine kinase Src. Roles of other potential regulators in this pathway, such as phosphatidylinositol 3-kinase, heterotrimeric GTP-binding protein, phospholipase D (PLD) and phosphatidic acid (PA) are also discussed. Finally, we address roles of egg lipid/membrane microdomains or 'rafts' as a platform for the sperm-egg membrane interaction and subsequent signaling events of egg activation.

PubMed Disclaimer

Publication types

LinkOut - more resources