Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 11;113(14):1768-78.
doi: 10.1161/CIRCULATIONAHA.105.603050. Epub 2006 Apr 3.

Evidence of a dominant backward-propagating "suction" wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy

Affiliations

Evidence of a dominant backward-propagating "suction" wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy

Justin E Davies et al. Circulation. .

Abstract

Background: Coronary blood flow peaks in diastole when aortic blood pressure has fallen. Current models fail to completely explain this phenomenon. We present a new approach-using wave intensity analysis-to explain this phenomenon in normal subjects and to evaluate the effects of left ventricular hypertrophy (LVH).

Method and results: We measured simultaneous pressure and Doppler velocity with intracoronary wires in the left main stem, left anterior descending, and circumflex arteries of 20 subjects after a normal coronary arteriogram. Wave intensity analysis was used to identify and quantify individual pressure and velocity waves within the coronary artery circulation. A consistent pattern of 6 predominating waves was identified. Ninety-four percent of wave energy, accelerating blood forward along the coronary artery, came from 2 waves: first a pushing wave caused by left ventricular ejection-the dominant forward-traveling pushing wave; and later a suction wave caused by relief of myocardial microcirculatory compression-the dominant backward-traveling suction wave. The dominant backward-traveling suction wave (18.2+/-13.7 x 10(3) W m(-2)s(-1), 30%) was larger than the dominant forward-traveling pushing wave (14.3+/-17.6 x 10(3) W m(-2) s(-1), 22.3%, P =0.001) and was associated with a substantially larger increment in coronary blood flow velocity (0.51 versus 0.14 m/s, P <0.001). In LVH, the dominant backward-traveling suction wave percentage was significantly decreased (33.1% versus 26.9%, P =0.01) and inversely correlated with left ventricular septal wall thickness (r =-0.52, P <0.02).

Conclusions: Six waves predominantly drive human coronary blood flow. Coronary flow peaks in diastole because of the dominance of a "suction" wave generated by myocardial microcirculatory decompression. This is significantly reduced in LVH.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources