Biological effectiveness of high-energy protons: target fragmentation
- PMID: 1658843
Biological effectiveness of high-energy protons: target fragmentation
Abstract
High-energy protons traversing tissue produce local sources of high-linear-energy-transfer (LET) ions through nuclear fragmentation. We examine the contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate.
Similar articles
-
Biophysical modelling of proton radiation effects based on amorphous track models.Int J Radiat Biol. 2001 Sep;77(9):911-28. doi: 10.1080/09553000110066059. Int J Radiat Biol. 2001. PMID: 11576451
-
DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches.Int J Radiat Biol. 2005 Nov;81(11):841-54. doi: 10.1080/09553000500530888. Int J Radiat Biol. 2005. PMID: 16484153
-
Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions.J Radiol Prot. 2009 Jun;29(2A):A143-57. doi: 10.1088/0952-4746/29/2A/S10. Epub 2009 May 19. J Radiol Prot. 2009. PMID: 19454805 Review.
-
Direct comparison of biologically optimized spread-out bragg peaks for protons and carbon ions.Int J Radiat Oncol Biol Phys. 2008 Jan 1;70(1):262-6. doi: 10.1016/j.ijrobp.2007.08.029. Epub 2007 Nov 1. Int J Radiat Oncol Biol Phys. 2008. PMID: 17935903
-
Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations.J Radiol Prot. 2009 Mar;29(1):5-21. doi: 10.1088/0952-4746/29/1/R01. Epub 2009 Feb 18. J Radiol Prot. 2009. PMID: 19225189 Review.
Cited by
-
Comparison of radiobiological effective depths in 65-MeV modulated proton beams.Br J Cancer. 1997;76(2):220-5. doi: 10.1038/bjc.1997.365. Br J Cancer. 1997. PMID: 9231922 Free PMC article.
-
Isotopic production cross sections in proton-16O and proton-12C interactions for energies from 10 MeV/u to 100 GeV/u.Nucl Instrum Methods Phys Res B. 2023 Jan 1;534:26-34. doi: 10.1016/j.nimb.2022.11.005. Epub 2022 Nov 16. Nucl Instrum Methods Phys Res B. 2023. PMID: 36644589 Free PMC article.
-
Biological Effectiveness of Accelerated Protons for Chromosome Exchanges.Front Oncol. 2015 Oct 19;5:226. doi: 10.3389/fonc.2015.00226. eCollection 2015. Front Oncol. 2015. PMID: 26539409 Free PMC article.
-
Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight.Int J Mol Sci. 2017 Oct 16;18(10):2153. doi: 10.3390/ijms18102153. Int J Mol Sci. 2017. PMID: 29035346 Free PMC article. Review.
-
Contribution to dose in healthy tissue from secondary target fragments in therapeutic proton, He and C beams measured with CR-39 plastic nuclear track detectors.Sci Rep. 2019 Mar 6;9(1):3708. doi: 10.1038/s41598-019-39598-0. Sci Rep. 2019. PMID: 30842438 Free PMC article.