Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov;261(5 Pt 1):C799-807.
doi: 10.1152/ajpcell.1991.261.5.C799.

K(+)-induced inhibition of contractile force in rat skeletal muscle: role of active Na(+)-K+ transport

Affiliations

K(+)-induced inhibition of contractile force in rat skeletal muscle: role of active Na(+)-K+ transport

T Clausen et al. Am J Physiol. 1991 Nov.

Abstract

During excitation, K+ is lost from the working muscle fibers, and interfiber K+ may reach 10-15 mM. This, in turn, may lead to depolarization and impairment of contractile performance. The significance of elevated interfiber K+ was assessed by exposing rat muscles of uniform size (25 mg) to buffer containing 12.5-15 mM K+ and studying the decline in contractile performance and its recovery following restoration of the K+ concentration of the standard buffer (5.9 mM). When active Na(+)-K+ transport was partially inhibited by ouabain (10(-6)-10(-5) M leading to relative occupancies of 28 and 84%, respectively), the decrease in force development induced by high K+ in soleus was considerably accelerated and recovery was delayed. Conversely, when active Na(+)-K+ transport was stimulated by epinephrine, the beta 2-agonist salbutamol, or insulin, the exposure to high K+ gave a much slower decline in force. The time until full inhibition was closely correlated to the rate of Na(+)-K+ pump-mediated 86Rb uptake (r = 0.98; P less than 0.005). Significant retardation of K(+)-induced force decline could be detected down to 10(-8) M epinephrine or salbutamol. After restoration of 5.9 mM K+, recovery was promoted by epinephrine and salbutamol but not by insulin. In extensor digitorum longus muscle, insulin reduced the rate of force decline induced by exposure to 15 mM K+. The results indicate that the Na(+)-K+ pump plays a major role in the maintenance of contractility during the physiological acute exposure to high extracellular K+ associated with muscle work.

PubMed Disclaimer

Publication types

LinkOut - more resources