Cyanobacterial phycobilisomes: Selective dissociation monitored by fluorescence and circular dichroism
- PMID: 16592802
- PMCID: PMC348629
- DOI: 10.1073/pnas.77.4.1961
Cyanobacterial phycobilisomes: Selective dissociation monitored by fluorescence and circular dichroism
Abstract
Phycobilisomes are supramolecular assemblies of phycobiliproteins responsible for photosynthetic light collection in red algae and cyanobacteria. They can be selectively dissociated by reduction of temperature and buffer concentration. Phycobilisomes isolated from Fremyella diplosiphon transfer energy collected by C-phycoerythrin and C-phycocyanin to allophycocyanin. The energy transfer to allophycocyanin is nearly abolished at 2 degrees C, as indicated by a blue shift in fluorescence emission, and is accompanied by a decrease in the circular dichroism in the region of allophycocyanin absorbance. Further dissociation of the phycobilisomes can be attained by reduction of buffer concentration and holding at 2 degrees C. Energy transfer to C-phycocyanin is nearly abolished, and decreases occur in the circular dichroism in the region of C-phycocyanin and C-phycoerythrin absorbance. Complete dissociation of the phycobilisomes at low buffer concentration and 2 degrees C requires extended time. Energy transfer to C-phycocyanin is further reduced and the circular dichroism maximum of C-phycoerythrin at 575 nm is lost. Circular dichroism provides information on the hexamer-monomer transitions of the phycobiliproteins, whereas fluorescence is indicative of hexamer-hexamer interactions. We consider that hydrophobic interactions are fundamental to the maintenance of the structure and function of phycobilisomes.
Similar articles
-
Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella.Proc Natl Acad Sci U S A. 1982 Sep;79(17):5277-81. doi: 10.1073/pnas.79.17.5277. Proc Natl Acad Sci U S A. 1982. PMID: 16593223 Free PMC article.
-
Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy.Biochim Biophys Acta. 1976 May 14;430(2):375-88. doi: 10.1016/0005-2728(76)90093-1. Biochim Biophys Acta. 1976. PMID: 1276188
-
Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301.J Biol Chem. 1978 Nov 25;253(22):8303-10. J Biol Chem. 1978. PMID: 101538
-
[Cyanobacterial Phycobilisomes and Phycobiliproteins].Mikrobiologiia. 2015 Mar-Apr;84(2):131-43. Mikrobiologiia. 2015. PMID: 26263619 Review. Russian.
-
Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat.Arch Microbiol. 2001 Dec;176(6):400-5. doi: 10.1007/s002030100346. Epub 2001 Sep 27. Arch Microbiol. 2001. PMID: 11734882 Review.
Cited by
-
Phycobilisome structure and function.Photosynth Res. 1986 Jan;10(1-2):7-35. doi: 10.1007/BF00024183. Photosynth Res. 1986. PMID: 24435274
-
Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella.Proc Natl Acad Sci U S A. 1982 Sep;79(17):5277-81. doi: 10.1073/pnas.79.17.5277. Proc Natl Acad Sci U S A. 1982. PMID: 16593223 Free PMC article.
-
Light-Harvesting System of the Red Alga Gracilaria tikvahiae: II. Phycobilisome Characteristics of Pigment Mutants.Plant Physiol. 1983 Oct;73(2):361-9. doi: 10.1104/pp.73.2.361. Plant Physiol. 1983. PMID: 16663221 Free PMC article.
-
Molecular morphology of cyanobacterial phycobilisomes.Plant Physiol. 1982 Sep;70(3):887-97. doi: 10.1104/pp.70.3.887. Plant Physiol. 1982. PMID: 16662595 Free PMC article.
-
Structural organization of an intact phycobilisome and its association with photosystem II.Cell Res. 2015 Jun;25(6):726-37. doi: 10.1038/cr.2015.59. Epub 2015 May 22. Cell Res. 2015. PMID: 25998682 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources