Evidence for metabolic and functional discrimination of sterols by Phytophthora cactorum
- PMID: 16593322
- PMCID: PMC394013
- DOI: 10.1073/pnas.80.11.3227
Evidence for metabolic and functional discrimination of sterols by Phytophthora cactorum
Abstract
When fed 10 ppm of one of the following sterols: cholesterol (cholest-5-en-3beta-ol), wingsterol (21-isopentylcholesterol), desmosterol [cholesta-5,24(25)-dien-3beta-ol], 24-methylenecholesterol [ergosta-5,24(28)-dien-3beta-ol], or fucosterol [stigmasta-5,24(28)-dien-3beta-ol], the pathogenic fungus Phytophthora cactorum, which is naturally unable to epoxidize squalene, accumulated each of the test compounds to similar levels. Fucosterol, the only sterol metabolized, was reduced to yield 24-ethylcholesterol. All the sterols tested induced the formation of sex structures. Fertilization and subsequent maturation of oospores capable of germination occurred only with the naturally occurring sterols. Wingsterol treatments resulted in aborted oospores. None of the sterols tested was inhibitory to growth, measured as changes in the 21-day mycelial dry weight. The results are consistent with the view that the accumulated sterol functions to regulate the life cycle of P. cactorum. However, the metabolism and kinds of recognition of the sterol molecule, in terms of uptake and effects on growth and induction of the various sexual events, contrast sharply with what is known for other oomycetous fungi such as Achlya and Saprolegnia. This implies that the evolutionary histories of the Oomycetes may be different.
Similar articles
-
Analysis of sterols in selected bloom-forming algae in China.Harmful Algae. 2017 Jun;66:29-39. doi: 10.1016/j.hal.2017.04.008. Epub 2017 May 10. Harmful Algae. 2017. PMID: 28602251
-
Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.World J Microbiol Biotechnol. 2018 Mar 28;34(4):55. doi: 10.1007/s11274-018-2440-9. World J Microbiol Biotechnol. 2018. PMID: 29594560
-
A novel olefinic rearrangement. The enzymic conversion of cholesta-7,9-dien-3 -ol into cholesta-8,14-dien-3 -ol.Biochem J. 1972 Sep;129(2):225-9. doi: 10.1042/bj1290225. Biochem J. 1972. PMID: 4404936 Free PMC article.
-
Differences in the sterol composition of dominant Antarctic zooplankton.Lipids. 1999 Jan;34(1):45-51. doi: 10.1007/s11745-999-336-1. Lipids. 1999. PMID: 10188596
-
Sterol biosynthesis in the echinoderm Asterias rubens.Biochem J. 1975 Jan;146(1):25-33. doi: 10.1042/bj1460025. Biochem J. 1975. PMID: 1147897 Free PMC article.
Cited by
-
Sterol phylogenesis and algal evolution.Proc Natl Acad Sci U S A. 1990 Oct;87(19):7565-9. doi: 10.1073/pnas.87.19.7565. Proc Natl Acad Sci U S A. 1990. PMID: 11607106 Free PMC article.
-
Reassessment of the role of phospholipids in sexual reproduction by sterol-auxotrophic fungi.J Bacteriol. 1989 Jul;171(7):3831-9. doi: 10.1128/jb.171.7.3831-3839.1989. J Bacteriol. 1989. PMID: 2738023 Free PMC article.
-
Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans.PLoS One. 2017 Feb 2;12(2):e0170873. doi: 10.1371/journal.pone.0170873. eCollection 2017. PLoS One. 2017. PMID: 28152045 Free PMC article.
-
Druggable Sterol Metabolizing Enzymes in Infectious Diseases: Cell Targets to Therapeutic Leads.Biomolecules. 2024 Feb 20;14(3):249. doi: 10.3390/biom14030249. Biomolecules. 2024. PMID: 38540670 Free PMC article. Review.
-
Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation.J Chem Ecol. 2013 Jun;39(6):733-43. doi: 10.1007/s10886-013-0295-y. Epub 2013 May 21. J Chem Ecol. 2013. PMID: 23689874
References
LinkOut - more resources
Full Text Sources
Research Materials