Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase
- PMID: 16593710
- PMCID: PMC323716
- DOI: 10.1073/pnas.83.12.4282
Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase
Abstract
A reaction cycle for electron-transportdriven proton pumps is proposed. It includes two distinct conformational states of the pump protein in which the primary electron acceptor has different reduction potentials. This has as an unavoidable consequence that the steady-state rate equation for the catalytic reaction driving the pump is nonhyperbolic. The model can be used to simulate experimental results for the kinetics of cytochrome oxidase (EC 1.9.3.1) in a wide range of experimental conditions (ionic strength, pH, temperature). It is thus not necessary to invoke more than one binding site for cytochrome c to account for the biphasic response of the oxidase activity to the concentration of this substrate.
Similar articles
-
The steady-state rate equation for cytochrome c oxidase based on a minimal kinetic scheme.J Inorg Biochem. 1985 Mar-Apr;23(3-4):233-42. doi: 10.1016/0162-0134(85)85030-3. J Inorg Biochem. 1985. PMID: 2991462
-
Electron transfer kinetics during the reduction and turnover of the cytochrome caa3 complex from Bacillus subtilis.Biochemistry. 1998 Jul 14;37(28):9991-8. doi: 10.1021/bi980331c. Biochemistry. 1998. PMID: 9665704
-
Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.Biochemistry. 2003 Feb 18;42(6):1488-98. doi: 10.1021/bi026524o. Biochemistry. 2003. PMID: 12578361
-
Elementary steps of proton translocation in the catalytic cycle of cytochrome oxidase.Biochim Biophys Acta. 2006 May-Jun;1757(5-6):401-7. doi: 10.1016/j.bbabio.2006.05.026. Epub 2006 May 23. Biochim Biophys Acta. 2006. PMID: 16829227
-
Respiratory conservation of energy with dioxygen: cytochrome C oxidase.Met Ions Life Sci. 2015;15:89-130. doi: 10.1007/978-3-319-12415-5_4. Met Ions Life Sci. 2015. PMID: 25707467 Review.
Cited by
-
Proton pumping by cytochrome oxidase as studied by time-resolved stopped-flow spectrophotometry.Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5949-53. doi: 10.1073/pnas.90.13.5949. Proc Natl Acad Sci U S A. 1993. PMID: 8392182 Free PMC article.
-
1H-n.m.r. evaluation of the ferricytochrome c-cardiolipin interaction. Effect of superoxide radicals.Biochem J. 1990 Jan 1;265(1):227-32. doi: 10.1042/bj2650227. Biochem J. 1990. PMID: 2154181 Free PMC article.
-
Probing the high-affinity site of beef heart cytochrome c oxidase by cross-linking.Biochem J. 1996 May 1;315 ( Pt 3)(Pt 3):909-16. doi: 10.1042/bj3150909. Biochem J. 1996. PMID: 8645176 Free PMC article.
-
Expanding the view of proton pumping in cytochrome c oxidase through computer simulation.Biochim Biophys Acta. 2012 Apr;1817(4):518-25. doi: 10.1016/j.bbabio.2011.11.017. Epub 2011 Dec 8. Biochim Biophys Acta. 2012. PMID: 22178790 Free PMC article.
-
Investigation of the electron-transfer properties of cytochrome c oxidase covalently cross-linked to Fe- or Zn-containing cytochrome c.Biochem J. 1992 Nov 1;287 ( Pt 3)(Pt 3):951-6. doi: 10.1042/bj2870951. Biochem J. 1992. PMID: 1332689 Free PMC article.
References
LinkOut - more resources
Full Text Sources