Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991:86 Suppl 2:117-25.
doi: 10.1007/978-3-642-72461-9_13.

Interactions between nitric oxide and prostacyclin in myocardial ischemia and endothelial cell cultures

Affiliations

Interactions between nitric oxide and prostacyclin in myocardial ischemia and endothelial cell cultures

K Schrör et al. Basic Res Cardiol. 1991.

Abstract

This study investigates biochemical and functional interactions between NO and PGI2 that generate pathways in two different in vitro assays: porcine aortic endothelial cells (PAEC) and reperfused ischemic Langendorff hearts of rabbits. Using cGMP as an index of NO generation and 6-oxo-PGF1 alpha as an index for PGI2 production in endothelial cells, it is demonstrated that the two metabolic pathways for NO and prostacyclin formation act independent of each other. Moreover, NO appears to have an autocrine function in endothelial cells which does not exist with PGI2, probably because of a lack of PGI2 receptors. Endothelial damage in the course of myocardial ischemia is associated with a marked increase in mediator release whose inhibition has consequences for both myocardial and coronary function: inhibition of NO formation also inhibits PGI2 release and the recovery of coronary vessel tone with only minor if any effect on myocardial contractility. In contrast, inhibition of PGI2-generation results in marked deterioration of myocardial recovery with only minor changes in coronary perfusion. It is concluded from these data that PGI2 in endothelial injury is important for preservation of myocardial function while NO might mainly be involved in control of local vessel tone.

PubMed Disclaimer

Similar articles

Publication types