Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;83(18):6810-4.
doi: 10.1073/pnas.83.18.6810.

Proton percolation on hydrated lysozyme powders

Affiliations

Proton percolation on hydrated lysozyme powders

G Careri et al. Proc Natl Acad Sci U S A. 1986 Sep.

Abstract

The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold h(c) = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at h(c) is in close agreement with the prediction of theory for surface percolation. We view the protonic conduction process described here for low hydration and previously for high hydration as percolative proton transfer along threads of hydrogen-bonded water molecules. A principal element of the percolation picture, which explains the invariance of h(c) to change in pH and solvent, is the sudden appearance of long-range connectivity and infinite clusters at the threshold h(c). The relationship of the protonic conduction threshold to other features of protein hydration is described. The importance of percolative processes for enzyme catalysis and membrane transport is discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5342-6 - PubMed

LinkOut - more resources