Theory of hexagonal and stripe phases in monolayers
- PMID: 16594039
- PMCID: PMC287154
- DOI: 10.1073/pnas.86.10.3452
Theory of hexagonal and stripe phases in monolayers
Abstract
Epifluorescence microscopy can be used to visualize the shapes of solid lipid domains in two-phase regions of monolayers at the air-water interface. The shapes of certain lipid domains result from a competition between a one-dimensional line tension and long-range intermolecular electrostatic repulsion. Under specified conditions, a finite two-dimensional domain with one shape can undergo a sharp transition to a second shape, as the area of the domain is changed. Two-dimensional infinite arrays of domains can also have transitions involving changes in the shapes and patterns of domains, such as the stripe to hexagonal phase transition [Andelman, D., Brochard, F. & Joanny, J. F. (1987) J. Chem. Phys. 86, 3673-3681]. The present paper treats the hexagonal and stripe phases with the same approximations and methods of calculation as used previously for the isolated, finite domains. It is shown that one effect of electrostatic repulsion between domains is to cause these domains to increase in size as they approach one another on monolayer compression. It is also shown that there can be two distinct conditions where the hexagonal and stripe phases coexist.
Similar articles
-
Critical shape transitions of monolayer lipid domains.Proc Natl Acad Sci U S A. 1989 Sep;86(17):6445-8. doi: 10.1073/pnas.86.17.6445. Proc Natl Acad Sci U S A. 1989. PMID: 16594064 Free PMC article.
-
Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.Biophys J. 2005 Jan;88(1):287-304. doi: 10.1529/biophysj.104.048959. Epub 2004 Oct 15. Biophys J. 2005. PMID: 15489298 Free PMC article.
-
Two-dimensional chiral crystals of phospholipid.Nature. 1984 Jul 5-11;310(5972):47-9. doi: 10.1038/310047a0. Nature. 1984. PMID: 6738702
-
Progress in characterization of Langmuir monolayers by consideration of compressibility.Adv Colloid Interface Sci. 2006 Nov 30;127(2):83-97. doi: 10.1016/j.cis.2006.11.006. Adv Colloid Interface Sci. 2006. PMID: 17208192 Review.
-
Large organized surface domains self-assembled from nonpolar amphiphiles.Acc Chem Res. 2012 Apr 17;45(4):514-24. doi: 10.1021/ar200178a. Epub 2011 Dec 21. Acc Chem Res. 2012. PMID: 22185721 Review.
Cited by
-
Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers.Biophys J. 1997 Jun;72(6):2783-804. doi: 10.1016/S0006-3495(97)78921-5. Biophys J. 1997. PMID: 9168053 Free PMC article.
-
Interactions and pattern formation in a macroscopic magnetocapillary SALR system of mermaid cereal.Nat Commun. 2024 Jun 27;15(1):5466. doi: 10.1038/s41467-024-49754-4. Nat Commun. 2024. PMID: 38937449 Free PMC article.
-
Critical shape transitions of monolayer lipid domains.Proc Natl Acad Sci U S A. 1989 Sep;86(17):6445-8. doi: 10.1073/pnas.86.17.6445. Proc Natl Acad Sci U S A. 1989. PMID: 16594064 Free PMC article.
-
Self-assembly of rationally designed peptides under two-dimensional confinement.Biophys J. 2010 Nov 3;99(9):2888-95. doi: 10.1016/j.bpj.2010.08.061. Biophys J. 2010. PMID: 21044586 Free PMC article.
-
Shape morphology of dipolar domains in planar and spherical monolayers.J Chem Phys. 2020 Jun 21;152(23):234701. doi: 10.1063/5.0009667. J Chem Phys. 2020. PMID: 32571056 Free PMC article.
References
LinkOut - more resources
Full Text Sources