Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;69(7):1123-8.
doi: 10.1139/y91-164.

Excitatory amino acids: new tools for old stories or pharmacological subtypes of glutamate receptors: electrophysiological studies

Affiliations

Excitatory amino acids: new tools for old stories or pharmacological subtypes of glutamate receptors: electrophysiological studies

D Lodge et al. Can J Physiol Pharmacol. 1991 Jul.

Abstract

Although the N-methyl-D-aspartate (NMDA) subtype of L-glutamate receptor is well characterized, the significance of non-NMDA glutamate-sensitive binding sites is not well documented. In this study, a new tricyclic quinoxalinedione (NBQX) and an arthropod toxin (philanthotoxin) were shown to block responses of spinal neurones in vivo to kainate, quisqualate, and AMPA in parallel but had little effect on responses to NMDA. Philanthotoxin appeared to be a use-dependent antagonist consistent with a channel-blocking mode of action. On cortical wedges in vitro, however, NBQX proved to be a more potent antagonist of AMPA and quisqualate than of kainate (pA2 values of 7.1, 7.0, and 5.6, respectively) with no effect at 10 microM on responses to NMDA. These studies provide evidence that on cortical neurones, but not on spinal neurones. AMPA and kainate depolarize by pharmacologically different mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources