Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 23;281(25):17304-17311.
doi: 10.1074/jbc.M511072200. Epub 2006 Apr 4.

Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain

Affiliations

Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain

Chul-Kyu Park et al. J Biol Chem. .

Abstract

Temperature signaling can be initiated by members of transient receptor potential family (thermo-TRP) channels. Hot and cold substances applied to teeth usually elicit pain sensation. This study investigated the expression of thermo-TRP channels in dental primary afferent neurons of the rat identified by retrograde labeling with a fluorescent dye in maxillary molars. Single cell reverse transcription-PCR and immunohistochemistry revealed expression of TRPV1, TRPM8, and TRPA1 in subsets of such neurons. Capsaicin (a TRPV1 agonist), menthol (a TRPM8 agonist), and icilin (a TRPM8 and TRPA1 agonist) increased intracellular calcium and evoked cationic currents in subsets of neurons, as did the appropriate temperature changes (>43 degrees , <25 degrees , and <17 degrees C, respectively). Some neurons expressed more than one TRP channel and responded to two or three corresponding stimuli (ligands or thermal stimuli). Immunohistochemistry and single cell reverse transcription-PCR following whole cell recordings provided direct evidence for the association between the responsiveness to thermo-TRP ligands and expression of thermo-TRP channels. The results suggest that activation of thermo-TRP channels expressed by dental afferent neurons contributes to tooth pain evoked by temperature stimuli. Accordingly, blockade of thermo-TRP channels will provide a novel therapeutic intervention for the treatment of tooth pain.

PubMed Disclaimer

Publication types