Dynamic phenotypes: time series analysis techniques for characterizing neuronal and behavioral dynamics
- PMID: 16595862
- DOI: 10.1385/NI:4:1:119
Dynamic phenotypes: time series analysis techniques for characterizing neuronal and behavioral dynamics
Abstract
We consider quantitative measures of behavioral and neuronal dynamics as a means of characterizing phenotypes. Such measures are important from a scientific perspective; because understanding brain function is contingent on understanding the link between the dynamics of the nervous system and behavioral dynamics. They are also important from a biomedical perspective because they provide a contrast to purely psychological characterizations of phenotype or characterizations via static brain images or maps, and are a potential means for differential diagnoses of neuropsychiatric illnesses. After a brief presentation of background work and some current advances, we suggest that more attention needs to be paid to dynamic characterizations of phenotypes. We will discuss some of the relevant time series analysis tools.
Similar articles
-
Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony?Neuroinformatics. 2005;3(4):301-14. doi: 10.1385/NI:3:4:301. Neuroinformatics. 2005. PMID: 16284413
-
Combining magnetoencephalography and functional magnetic resonance imaging.Int Rev Neurobiol. 2005;68:121-48. doi: 10.1016/S0074-7742(05)68005-1. Int Rev Neurobiol. 2005. PMID: 16443012 Review. No abstract available.
-
Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.IEEE Trans Biomed Eng. 2002 Sep;49(9):975-87. doi: 10.1109/TBME.2002.802013. IEEE Trans Biomed Eng. 2002. PMID: 12214887
-
Time-shift denoising source separation.J Neurosci Methods. 2010 May 30;189(1):113-20. doi: 10.1016/j.jneumeth.2010.03.002. Epub 2010 Mar 16. J Neurosci Methods. 2010. PMID: 20298717
-
Magnetoencephalography in studies of infants and children.Int Rev Neurobiol. 2005;68:25-50. doi: 10.1016/S0074-7742(05)68002-6. Int Rev Neurobiol. 2005. PMID: 16443009 Review. No abstract available.
Cited by
-
Context-dependent decision-making in the primate hippocampal-prefrontal circuit.Nat Neurosci. 2025 Feb;28(2):374-382. doi: 10.1038/s41593-024-01839-5. Epub 2025 Jan 6. Nat Neurosci. 2025. PMID: 39762657 Free PMC article.
-
Development and temporal organization of repetitive behavior in an animal model.Dev Psychobiol. 2010 Dec;52(8):813-24. doi: 10.1002/dev.20477. Dev Psychobiol. 2010. PMID: 20607792 Free PMC article.
-
Finding synchrony in the desynchronized EEG: the history and interpretation of gamma rhythms.Front Integr Neurosci. 2013 Aug 12;7:58. doi: 10.3389/fnint.2013.00058. eCollection 2013. Front Integr Neurosci. 2013. PMID: 23964210 Free PMC article.
-
Database analysis of simulated and recorded electrophysiological datasets with PANDORA's toolbox.Neuroinformatics. 2009 Jun;7(2):93-111. doi: 10.1007/s12021-009-9048-z. Epub 2009 May 28. Neuroinformatics. 2009. PMID: 19475520 Free PMC article.
-
Chronux: a platform for analyzing neural signals.J Neurosci Methods. 2010 Sep 30;192(1):146-51. doi: 10.1016/j.jneumeth.2010.06.020. Epub 2010 Jul 15. J Neurosci Methods. 2010. PMID: 20637804 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources