Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:(170):619-44.
doi: 10.1007/3-540-27661-0_23.

Protection of endothelial function

Affiliations
Review

Protection of endothelial function

L E Spieker et al. Handb Exp Pharmacol. 2005.

Abstract

The vascular endothelium synthesizes and releases a spectrum of vasoactive substances and therefore plays a fundamental role in the basal and dynamic regulation of the circulation. Nitric oxide (NO)--originally described as endothelium-derived relaxing factor--is released from endothelial cells in response to shear stress produced by blood flow, and in response to activation of a variety of receptors. After diffusion from endothelial to vascular smooth muscle cells, NO increases intracellular cyclic guanosine-monophosphat concentrations by activation of the enzyme guanylate cyclase leading to relaxation of the smooth muscle cells. NO has also antithrombogenic, antiproliferative, leukocyte-adhesion inhibiting effects, and influences myocardial contractility. Endothelium-derived NO-mediated vascular relaxation is impaired in spontaneously hypertensive animals. NO decomposition by free oxygen radicals is a major mechanism of impaired NO bioavailability. The resulting imbalance of endothelium-derived relaxing and contracting substances disturbs the nor- mal function of the vascular endothelium. Endothelin acts as the natural counterpart to endothelium-derived NO. In man, besides its effect of increasing arterial blood pressure, ET-1 induces vascular and myocardial hypertrophy, which are independent risk factors for cardiovascular morbidity and mortality. Current therapeutic strategies concentrate mainly on lowering of low-density lipoprotein cholesterol and an impressive reduction in the risk for cardiovascular morbidity and mortality has been achieved. Inflammatory mechanisms play an important role in vascular disease and inflammatory plasma markers correlate with prognosis. Novel therapeutic strategies specifically targeting inflammation thus bear great potential for the prevention and treatment of atherosclerotic vascular disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources