Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;17(5):1305-15.
doi: 10.1681/ASN.2005111185. Epub 2006 Apr 5.

Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D

Affiliations

Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D

Shiguang Liu et al. J Am Soc Nephrol. 2006 May.

Abstract

The regulation of the phosphaturic factor fibroblast growth factor 23 (FGF23) is not well understood. It was found that administration of 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) to mice rapidly increased serum FGF23 concentrations from a basal level of 90.6 +/- 8.1 to 213.8 +/- 14.6 pg/ml at 8 h (mean +/- SEM; P < 0.01) and resulted in a four-fold increase in FGF23 transcripts in bone, the predominate site of FGF23 expression. In the Hyp-mouse homologue of X-linked hypophosphatemic rickets, administration of 1,25(OH)(2)D(3) further increased circulating FGF23 levels. In Gcm2 null mice, low 1,25(OH)(2)D(3) levels were associated with a three-fold reduction in FGF23 levels that were increased by administration of 1,25(OH)(2)D(3). In osteoblast cell cultures, 1,25(OH)(2)D(3) but not calcium, phosphate, or parathyroid hormone stimulated FGF23 mRNA levels and resulted in a dose-dependent increase in FGF23 promoter activity. Overexpression of a dominant negative vitamin D receptor inhibited 1,25(OH)(2)D(3) stimulation of FGF23 promoter activity, and mutagenesis of the FGF23 promoter identified a vitamin D-responsive element (-1180 GGAACTcagTAACCT -1156) that is responsible for the vitamin D effects. These data suggest that 1,25(OH)(2)D(3) is an important regulator of FGF23 production by osteoblasts in bone. The physiologic role of FGF23 may be to act as a counterregulatory phosphaturic hormone to maintain phosphate homeostasis in response to vitamin D.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources