Bacillus endospores isolated from granite: close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments
- PMID: 16597992
- PMCID: PMC1449054
- DOI: 10.1128/AEM.72.4.2856-2863.2006
Bacillus endospores isolated from granite: close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments
Abstract
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain approximately 500 cultivable Bacillus spores and approximately 10(4) total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted.
Figures





References
-
- Andrews, M., H. J. Sun, and K. H. Nealson. 2002. Novel bacterial 16S rRNA sequences from a marine endolithic community, p. 333. Abstr. 102nd Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, D.C.
-
- Balkwill, D. L., R. H. Reeves, G. R. Drake, J. Y. Reeves, F. H. Crocker, M. B. King, and D. R. Boone. 1997. Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol. Rev. 20:201-216. - PubMed
-
- Benardini, J. N., J. Sawyer, K. Venkateswaran, and W. L. Nicholson. 2003. Spore UV and acceleration resistance of endolithic Bacillus pumilus and B. subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. Astrobiology 3:709-717. - PubMed
-
- Boone, D. R., Y. Liu, Z.-J. Zhao, D. L. Balkwill, G. R. Drake, T. O. Stevens, and H. C. Aldrich. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441-448. - PubMed
-
- Burchell, M. J., J. R. Mann, and A. W. Bunch. 2004. Survival of bacteria and spores under extreme shock pressures. Mon. Not. R. Astron. Soc. 352:1273-1278.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous