Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;147(7):3462-71.
doi: 10.1210/en.2006-0023. Epub 2006 Apr 6.

Inhibins differentially antagonize activin and bone morphogenetic protein action in a mouse adrenocortical cell line

Affiliations

Inhibins differentially antagonize activin and bone morphogenetic protein action in a mouse adrenocortical cell line

Paul G Farnworth et al. Endocrinology. 2006 Jul.

Abstract

Inhibin, a member of the TGF-beta superfamily, has been proposed to act as an inhibitor of activin and bone morphogenetic protein (BMP) by sequestering their type II receptors in nonsignaling complexes with betaglycan. This mechanism of inhibin action was tested in a mouse adrenocortical (AC) cell line by examining the effects of inhibins A and B on cytochrome P450 17alpha-hydroxylase 17,20-lyase (Cyp17) expression and 17alpha-hydroxylase activity, measured by progesterone 17alpha-hydroxylation, in the absence and presence of activin or BMP isoforms. Cyp17 mRNA endogenously expressed by AC cells was suppressed by activins A and B and BMP-2, -6, and -7, and each ligand accordingly inhibited 17alpha-hydroxyprogesterone production (IC(50) of 0.24, 0.27, 0.4, 0.51, and 2.2 nm, respectively). Neither inhibin A nor inhibin B alone affected Cyp17 expression or 17alpha-hydroxyprogesterone production. Both inhibin A and inhibin B blocked the inhibitory actions of activins A and B in AC cells, supporting the antiactivin model of inhibin action. Inhibin A provided more potent and effective antagonism of both activins than did inhibin B, and activin A was less subject to antagonism by either inhibin than was activin B. In contrast to the major antagonism of activin by both inhibins, only inhibin A antagonized the actions of BMP-2, BMP-6, and BMP-7, whereas inhibin B was ineffective against all tested BMP isoforms except BMP-7 at high concentrations. These results provide limited support for the anti-BMP model of inhibin action and reveal that, relative to inhibin A, inhibin B essentially behaves as a selective activin antagonist in AC cells. In conclusion, inhibins A and B differentially antagonize the actions of activins and BMPs to control adrenocortical C(19) steroid production.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources