Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;62(5):393-401.
doi: 10.1002/ps.1176.

Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide

Affiliations

Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide

Krystina S Opalski et al. Pest Manag Sci. 2006 May.

Abstract

Powdery mildew fungi are among the major pathogens causing diseases of cereals in the world. The mode of action of a novel systemic benzophenone fungicide, metrafenone, which is based on a precursor that is discussed in the preceding paper, has been analysed on the powdery mildew fungi of barley (Blumeria graminis Speer f. sp. hordei Marchal) and wheat (Blumeria graminis Speer f. sp. tritici Marchal). Preventive treatments reduced germination and blocked development beyond formation of appressoria, which penetrated less often. Moreover, metrafenone turned out to be an efficient curative fungicide, which rapidly affected fungal survival at low concentrations. The fungicide induced swelling, bursting and collapse of hyphal tips, resulting in the release of globules of cytoplasm. Bifurcation of hyphal tips, secondary appressoria and hyperbranching were also frequently observed. A histochemical analysis showed that metrafenone caused disruption of the apical actin cap and apical vesicle transport as well as weakening of the cell wall at hyphal tips. Finally, metrafenone strongly reduced sporulation. Reduced sporulation was associated with malformation of conidiophores that showed irregular septation, multinucleate cells and delocalisation of actin. Microtubules appeared to be only secondarily affected in metrafenone-treated B. graminis. The results suggest that the mode of action of metrafenone interferes with hyphal morphogenesis, polarised hyphal growth and the establishment and maintenance of cell polarity. Metrafenone likely disturbs a pathway regulating organisation of the actin cytoskeleton.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources