Multiple gating modes and the effect of modulating factors on the microI sodium channel
- PMID: 1660285
- DOI: 10.1016/0896-6273(91)90280-d
Multiple gating modes and the effect of modulating factors on the microI sodium channel
Abstract
Macroscopic current from the microI skeletal muscle sodium channel expressed in Xenopus oocytes shows inactivation with two exponential components. The major, slower component's amplitude decreases with rapid pulsing. When microI cRNA is coinjected with rat skeletal muscle or brain mRNA the faster component becomes predominant. Individual microI channels switch between two principal gating modes, opening either only once per depolarization, or repeatedly in long bursts. These two modes differ in both activation and inactivation kinetics. There is also evidence for additional gating modes. It appears that the equilibrium among gating modes is influenced by a modulating factor encoded in rat skeletal muscle and brain mRNA. The modal gating is similar to that observed in hyperkalemic periodic paralysis.
Similar articles
-
Mechanism of modulation of single sodium channels from skeletal muscle by the beta 1-subunit from rat brain.Pflugers Arch. 1994 Feb;426(3-4):360-2. doi: 10.1007/BF00374796. Pflugers Arch. 1994. PMID: 8183650
-
Low molecular weight poly(A)+ mRNA species encode factors that modulate gating of a non-Shaker A-type K+ channel.J Gen Physiol. 1993 Oct;102(4):713-28. doi: 10.1085/jgp.102.4.713. J Gen Physiol. 1993. PMID: 7903683 Free PMC article.
-
Voltage-dependent regulation of modal gating in the rat SkM1 sodium channel expressed in Xenopus oocytes.J Gen Physiol. 1994 Oct;104(4):625-43. doi: 10.1085/jgp.104.4.625. J Gen Physiol. 1994. PMID: 7836935 Free PMC article.
-
Primary structure and functional expression of a mammalian skeletal muscle sodium channel.Neuron. 1989 Jul;3(1):33-49. doi: 10.1016/0896-6273(89)90113-x. Neuron. 1989. PMID: 2559760
-
Modulation of the skeletal muscle sodium channel alpha-subunit by the beta 1-subunit.FEBS Lett. 1993 Dec 28;336(3):535-9. doi: 10.1016/0014-5793(93)80871-q. FEBS Lett. 1993. PMID: 8282123
Cited by
-
Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I(Ks).Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E996-1005. doi: 10.1073/pnas.1214875110. Epub 2013 Feb 19. Proc Natl Acad Sci U S A. 2013. PMID: 23431135 Free PMC article.
-
Kinetic model of Nav1.5 channel provides a subtle insight into slow inactivation associated excitability in cardiac cells.PLoS One. 2013 May 16;8(5):e64286. doi: 10.1371/journal.pone.0064286. Print 2013. PLoS One. 2013. PMID: 23696876 Free PMC article.
-
Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker.Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10905-9. doi: 10.1073/pnas.89.22.10905. Proc Natl Acad Sci U S A. 1992. PMID: 1332059 Free PMC article.
-
Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation.Neuron. 2013 Aug 21;79(4):651-7. doi: 10.1016/j.neuron.2013.05.036. Neuron. 2013. PMID: 23972594 Free PMC article.
-
Tail currents in the myelinated axon of Xenopus laevis suggest a two-open-state Na channel.Biophys J. 1997 Jul;73(1):179-85. doi: 10.1016/S0006-3495(97)78058-5. Biophys J. 1997. PMID: 9199782 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources