Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;49(25):1915-21.
doi: 10.1016/0024-3205(91)90293-k.

Mechanisms of action of cyclosporin A on islet alpha- and beta-cells. Effects on cAMP- and calcium-dependent pathways

Affiliations

Mechanisms of action of cyclosporin A on islet alpha- and beta-cells. Effects on cAMP- and calcium-dependent pathways

F Martin et al. Life Sci. 1991.

Abstract

The involvement of cAMP- and calcium-dependent pathways on the inhibitory effect of CsA (0.5 micrograms/ml) on insulin and glucagon release was studied in collagenase-isolated islets. CsA suppressed by 50% the release of insulin in pertussis toxin treated islets stimulated by 20 mM D-glucose. CsA blocked glucagon and insulin release induced by 0.2 mM IBMX (80% and 50% respectively). Similarly it inhibited glucagon and insulin release induced by 1 microM A23187 (53% and 40% respectively). CsA also abolished 0.1 microM glucagon-induced insulin release and 10 ng/ml VIP-induced glucagon release (70% and 38% respectively). The glucagon response to 2 mM D-glucose and to 10 mM arginine was decreased 25% and 45% respectively by CsA. The inhibitory effect of 0.1 microM somatostatin on insulin release was significantly abolished by CsA (p less than 0.001 vs control). On the other hand 1 microM forskolin induced insulin and glucagon release was not modified by CsA. Rats treated with CsA (10 mg/kg body wt) during 10 days showed hyperglycaemia, hypoglucagonemia and higher contents of pancreatic glucagon. It is concluded that CsA affects alpha- and beta-cell function, in vivo and in vitro, acting through calcium and cAMP-dependent pathways. This latter pathway involves the Ca(2+)-calmodulin dependent phosphodiesterase and the regulatory proteins Gs and Gi.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources