Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;73(3 Pt 2):036104.
doi: 10.1103/PhysRevE.73.036104. Epub 2006 Mar 2.

Automatic filters for the detection of coherent structure in spatiotemporal systems

Affiliations

Automatic filters for the detection of coherent structure in spatiotemporal systems

Cosma Rohilla Shalizi et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar.

Abstract

Most current methods for identifying coherent structures in spatially extended systems rely on prior information about the form which those structures take. Here we present two approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information needed for optimal prediction of the system's behavior in the vicinity of a given point. By examining the changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply both filters to elementary and cyclical cellular automata (ECA and CCA) and find that they readily identify particles, domains, and other more complicated structures. We compare the results from ECA with earlier ones based upon the theory of formal languages and the results from CCA with a more traditional approach based on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at uncovering structure, they are based on different system properties (dynamical and probabilistic, respectively) and provide complementary information.

PubMed Disclaimer

Publication types